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Abstract. The fermionic and bosonic sectors of the 2-site Hubbard model have been exactly solved by
means of the equation of motion and Green’s function formalism. The exact solution of the t-J model has
been also reported to investigate the low-energy dynamics. We have successfully searched for the exact
eigenoperators, and the corresponding eigenenergies, having in mind the possibility to use them as an
operatorial basis on the lattice. Many local, single-particle, thermodynamical and response properties have
been studied as functions of the external parameters and compared between the two models and with some
numerical and exact results. It has been shown that the 2-site Hubbard model already contains the most
relevant energy scales of the Hubbard model: the local Coulomb interaction U and the spin-exchange one
J = 4t2

U
. As a consequence of this, for some relevant properties (kinetic energy, double occupancy, energy,

specific heat and entropy) and as regards the metal-insulator transition issue, it has resulted possible
to almost exactly mime the behavior of larger systems, sometimes using a higher temperature to get a
comparable level spacing. The 2-site models have been also used as toy models to test the efficiency of
the Green’s function formalism for composite operators. The capability to reproduce the exact solutions,
obtained by the exact diagonalization technique, gives a firm ground to the approximate treatments based
on this formalism.

PACS. 71.10.-w Theories and models of many-electron systems – 71.10.Fd Lattice fermion models
(Hubbard model, etc.)

1 Introduction

Two are the aspects that gave so much popularity to
the Hubbard model: the richness of its dynamics that is
thought to permit a description of many puzzling issues
like metal-insulator transition, itinerant magnetism, elec-
tronic superconductivity, and the simplicity of the Hamil-
tonian structure that let one speculate about the possi-
bility of finding the exact and complete solution for any
realization of the underlying lattice. Anyway, although the
model has been studied more than any other one in the last
fifty years, very few exact results are available and what
we have mainly regards either finite clusters or the infinite
chain (i.e., the 1D case). For finite clusters of 2 [1,2] or
4 [2–6] sites it is possible to find the complete set of eigen-
states and eigenvalues of the Hamiltonian and compute
any quantity by means of the thermal averages. However,
it is not easy at all, although possible in principle, to ex-
tract valuable and scalable (i.e., which can be used to
find the solutions of bigger and bigger clusters and, ulti-
mately, of the infinite lattice cases) information regarding
the effective excitations present in the system, the opera-
tors describing them and their dynamics. For the infinite
chain neither, we have all the information we wish; the
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Bethe ansatz is a very powerful tool, but is severely limited
as regards the range of applicability of the self-consistent
equations it supplies and the quantities for which it gives
an answer.

In this manuscript, in order to overcome the limita-
tions discussed above, we have exactly solved the Hubbard
model, on a 2-site cluster, completely within the equations
of motion and the Green’s function formalism. By using
this approach, we have had the possibility to find the com-
plete set of eigenoperators of the Hamiltonian and the cor-
responding eigenenergies. This information has been really
fundamental as it permitted a deeper comprehension of
the features shown by the properties we have analyzed.
It is worth noting that the Hubbard model on a 2-site
cluster is the smallest system where both terms of the
Hamiltonian (i.e., kinetic and electrostatic) are effective
and contributes to the dynamics.

By properly tuning the value of the temperature, we
have found that the 2-site system can almost perfectly
mime, as regards relevant properties such as the kinetic
energy, the double occupancy, the energy, the specific heat,
the entropy and fundamental issues such as the metal in-
sulator transition, the behavior of larger clusters and of
the infinite chain. The tuning of the temperature is nec-
essary in order to get a comparable effective level spac-
ing (bigger the cluster, lower the spacing), i.e. to excite
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the correct levels: the relevant energy scales are present
although the relative positions of the levels are affected
by the size of the system (only two k points!). The very
positive comparisons with exact results (Bethe ansatz, ex-
act diagonalization) and numerical data (quantum Monte
Carlo, Lanczos) support the idea that a lot of physics can
be described and understood within this very small sys-
tem, for which there is the possibility to know the ana-
lytic expressions for all the quantities under study. As re-
gards the relevant scales of energy, this 2-site system has
demonstrated to contain all the necessary ingredients to
describe many features coming from the strong electronic
correlations and also appearing in the lattice case. Two of
the three relevant energy scales, which are thought to be
present in the Hubbard model, naturally emerge: the local
Coulomb interaction U and the spin-exchange one J = 4t2

U
that is, in principle, extraneous to the original purely elec-
trostatic Hamiltonian and is dynamically generated by the
combined actions of the two terms of the Hamiltonian. As
useful guide to better understand the low-energy dynam-
ics we have also solved the t-J model and presented the
solution in parallel with the one found for the Hubbard
model.

This analysis, which has resulted to be really relevant
by itself as we have got a much better understanding of
some energy scales and internal parameter dynamics, has
been worth to be performed also as a prelude of the lattice
analysis. In fact, the eigenoperators we have found, both
in the fermionic and the bosonic sectors, can be used in
the lattice case as a basis for the Green’s functions. In the
strongly correlated systems, the interactions can alter so
radically the dynamics of the original particles that these
latter lose completely their own identities [7]. Actually,
some new objects are generated by the interactions and
dictate the physical response. They are not so easy to be
identified: their number, exact expression and relevance
can only be suggested by the experience and, when avail-
able, by exact and/or numerical results. For instance, one
can choose: the higher order fields emerging from the equa-
tions of motion, the eigenoperators of some relevant inter-
acting terms, the eigenoperators of the problem reduced
to a small cluster, etc. In the last years, we have been
focusing our activity on the study of strongly correlated
electronic models like Kondo, t-J , p-d, Hubbard by means
of the Composite Operator Method [8–12] that is based on
two main ideas: one is the use of composite fields as basis
for our Green’s functions, in accordance to what has been
discussed above, and the other one is the exploitation of
algebra constraints (e.g., the Pauli principle, the particle-
hole symmetry, the Ward-Takahashi identities, ...) to fix
the correct representation of the Green’s functions and to
recover the links among the spin and charge configurations
dictated by the symmetries. It is worth noticing that the
Composite Operator Method is exact in itself. An addi-
tional approximation treatment is needed when we deal
with large or infinite degree-of-freedom systems; in this
case we have to treat in an approximate way the otherwise
intractable hierarchy of the equations of motion generated
by the projection procedure. If no approximation is nec-

essary (finite and reasonably small degree-of-freedom sys-
tems), the COM cannot do else than give the exact solu-
tion. According to this, the COM gives the exact solution
also for the two systems under analysis in this manuscript:
the two-site Hubbard and t-J models. Whenever, instead,
we should resort to an approximate treatment to close the
hierarchy of the equations of motion generated by the pro-
jection procedure, we expect some limitations connected
with the chosen approximation. For instance, we get only
the first moments correct if we truncate the equations of
motion hierarchy [8]. On the other hand, it is really worth
noting that we properly take into account: the interaction
term of the Hamiltonian by using as basis operators its
eigenoperators [13]; the short-range correlations by using
as basic fields the eigenoperators of the problem reduced
to a small cluster [14]; the presence of a Kondo-like singlet
at low-energy by properly closing the equation of motion
of an ad hoc chosen composite operator [15].

Obviously, we are aware that the exact diagonalization
of this very small system takes less than one afternoon to
any graduate student. Then, the reader could wonder why
we decided to study such a system so in detail. Well, the
reasons are many and some have been already pointed out
above:

• Any graduate student can surely compute eigenstates
and eigenvalues of these Hamiltonians in one after-
noon, but the analytic computation of Green’s func-
tions and correlation functions, in terms of the for-
mer eigenstuff, is not that straightforward as one can
think. At the end of the day, the time saved in com-
puting eigenstates and eigenvalues instead of eigenop-
erators is almost fully recovered if you also take into
account the time needed by the computation of the
physical properties (Green’s functions and correlations
functions). Then, the possibility to have scalable in-
formation putting, altogether, almost the same effort
become quite tempting for anyone. At any rate and
for the sake of completeness, we report in Appendix A
the expressions of Green’s functions and correlations
functions in terms of eigenstates and eigenvalues.

• The knowledge of the exact eigenoperators of a system
is invaluable as they could be used as correct start-
ing point for the application of the projection meth-
ods [16–20] to strongly correlated systems whose min-
imal model [11] is the exactly solved one.

• The Green’s function formalism for composite oper-
ators is extremely complicated [11]. The 2-site Hub-
bard model can be used as toy model to fully
explore this formalism and evidence the difficulties
connected with the treatment of composite operators
with non-canonical commutation relations. Within this
system, the appearance of zero-frequency functions can
be safely handled and resolved. The links among the
different channels (fermion, charge, spin, pair) can be
studied in detail.

• The 2-site Hubbard model, according to its status of
minimal model [11], contains the main scales of energy
related with the interactions present in the Hamilto-
nian. The exact solution in terms of eigenoperators
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permits to individuate which are the composite fields
responsible for the relevant transitions. These latter
can be then used to efficiently study larger clusters.

• The absence of the three-site term, for obvious geomet-
rical reasons, in the derivation of the 2-site t-J model
from the 2-site Hubbard one permits to push further
the study of the relations between the two models. It
is possible to exactly individuate the low-energy con-
tributions and study them separately.

• Last, but not least, the capability of miming the nu-
merical results for larger clusters (sometimes tuning
the temperature and, consequently, the effective level
spacing) opens the possibility to provide a testing-
ground for the numerical techniques.

In the following, we define the models, give the self-
consistent solutions in the fermionic and bosonic sectors
and study the local, single-particle, thermodynamic and
response properties of the systems; the eigenoperators,
eigenstates and eigenvalues of the system are also given
and analyzed in detail.

2 The 2-site Hubbard and t-J models

The Hamiltonian of the Hubbard model [21] for a N -site
chain reads as

H =
∑
ij

(tij − µδij) c†(i)c(j) + U
∑
i

n↑(i)n↓(i) (2.1)

µ is the chemical potential, c†(i) =
(
c†↑(i), c

†
↓(i)

)
is the

electronic creation operator at the site i in the spinorial
notation, U is the on-site Coulomb interaction strength,
nσ(i) = c†σ(i)cσ(i) is the charge density operator for spin
σ at the site i and

tij = −2tαij = −t
∑
k

cos [k (i− j)]α(k) (2.2)

where t is the hopping integral, a is the lattice constant,
αij is the projection operator on the nearest-neighbor sites
and α(k) = cos(ka). In the momentum representation, the
kinetic term Ht of the Hamiltonian (2.1) reads as

Ht = −2t
∑
k

α(k)c†(k)c(k) (2.3)

where k assumes the values 2π
Na l with l = 0, . . . , N − 1

for periodic boundary conditions and π
(N+1)a l with l =

1, . . . , N for open boundary conditions. We will study a
2-site cluster within periodic boundary conditions: N = 2
and k = 0, πa .

The Hamiltonian of the t-J model [22–24] for the same
cluster and boundary conditions reads as

H =
∑
k

[−2tα(k) − µ] ξ†(k)ξ(k)

+
1
2
J
∑
ij

αijν
µ(i)νµ(j) (2.4)

where ξ(i) = [1 − n(i)] c(i) is the fermionic composite
operator describing the transitions n = 0 ↔ n = 1,
νµ(i) = ξ†(i)σµξ(i) is the total charge (µ = 0) and spin
(µ = 1, 2, 3) density operator at the site i, σµ = (1, �σ),
σµ = (−1, �σ) and �σ are the Pauli matrices.

We will extensively use the following definition for any
field operator Ψ(i)

Ψα(i) =
∑
j

αijΨ(j). (2.5)

In particular, for the 2-site system we have Ψα (0) = Ψ (a),
Ψα (a) = Ψ (0) and Ψα

2
(i) = (Ψα(i))α = Ψ(i).

3 The fermionic sector

3.1 The equations of motion and the basis

3.1.1 The Hubbard model

After the Hubbard Hamiltonian (Eq. (2.1)), the electronic
field c(i) satisfies the following equation of motion

i
∂

∂t
c(i) = −µc(i) − 2tcα(i) + Uη(i) (3.1)

with η(i) = n(i)c(i) = − 1
3σknk(i)c(i). According to this,

we can decompose c(i) as

c(i) = ξ(i) + η(i) (3.2)

where ξ(i) and η(i) are the Hubbard operators and de-
scribe the transitions n = 0 ↔ n = 1 and n = 1 ↔ n = 2,
respectively. Moreover, they are the local eigenoperators
of the local term of the Hubbard Hamiltonian and describe
the original electronic field dressed by the on-site charge
and spin excitations. They satisfy the following equations
of motion

i
∂

∂t
ξ(i) = −µξ(i) − 2tcα(i) − 2tπ(i)

i
∂

∂t
η(i) = (U − µ)η(i) + 2tπ(i) (3.3)

with

π(i) =
1
2
σµnµ(i)cα(i) + ξ(i)c†α(i)η(i) (3.4)

where nµ(i) = c†(i)σµc(i) is the total charge (µ = 0) and
spin (µ = 1, 2, 3) density operator at the site i in the
Hubbard model. We use a different symbol to distinguish
it from the analogous operator, νµ, we have defined in the
t-J model. The field π(i) contains the nearest neighbor
charge, spin and pair excitations dressing the electronic
field c(i).

The field π(i) can be also decomposed as

π(i) = ξs(i) + ηs(i) (3.5)
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where

ξs(i) =
1
2
σµnµ(i)ξα(i) + ξ(i)ηα†(i)η(i)

ηs(i) =
1
2
σµnµ(i)ηα(i) + ξ(i)ξα†(i)η(i). (3.6)

These latter, which are non-local eigenoperators of the
local term of the complete Hubbard Hamiltonian, satisfy
the following equations of motion

i
∂

∂t
ξs(i) = −µξs(i) + 4tη(i) + 2tξαs (i) + 4tηαs (i)

i
∂

∂t
ηs(i) = (U − µ)ηs(i) + 2tη(i) + 2tξαs (i). (3.7)

By choosing these four operators as components of the
basic field

ψ(i) =



ξ(i)
η(i)
ξs(i)
ηs(i)


 (3.8)

we obtain a closed set of equations of motion. In the mo-
mentum space, we have

i
∂

∂t
ψ(k) = ε(k)ψ(k) (3.9)

where the energy matrix ε(k) is

ε(k) =




−µ− 2tα(k) −2tα(k) −2t −2t
0 U − µ 2t 2t
0 4t −µ+ 2tα(k) 4tα(k)
0 2t 2tα(k) U − µ


 .

(3.10)
It is worth noting that ψ(i) is an eigenoperator of the

Coulomb term of the Hubbard Hamiltonian for any lat-
tice structure according to the local nature of the interac-
tion [13].

3.1.2 The t-J model

For the t-J model we can obtain a closed set of equations
of motion by choosing as basic field

ψ(i) =
(
ξ(i)
ζ(i)

)
(3.11)

where
ζ(i) =

1
2
σµνµ(i)ξα(i). (3.12)

We have
i
∂

∂t
ψ(k) = ε(k)ψ(k) (3.13)

with

ε(k) =
(
−µ− 2tα(k) −2t+ 2Jα(k)

0 −µ+ 2tα(k) − 4J

)
. (3.14)

It should be noted that the t-J model exactly repro-
duces the Hubbard model in the regime of very strong

coupling (i.e., U � t). The three-site term, appearing
in the derivation of the t-J model from the Hubbard
one, is completely absent in the 2-site system for obvi-
ous geometric reasons and the given Hamiltonians are ex-
actly equivalent in the strong coupling limit. In particu-
lar, we note the following limits: limU�t ξs(i) = ζ(i) and
limU�t η(i) = limU�t ηs(i) = 0.

3.2 The Green’s function

3.2.1 The Hubbard model

Let us now compute the thermal retarded Green’s function
G (k, ω) = F

〈
R
[
ψ(i)ψ†(j)

]〉
that, after the equation of

motion of ψ(k) (3.9), satisfies the following equation

[ω − ε(k)]G (k, ω) = I(k) (3.15)

where I(k) = F
〈{
ψ(i), ψ†(j)

}〉
E.T.

is the normalization
matrix. The subscript E.T. means that the anticommuta-
tor {. . .} is evaluated at equal times. F and R[. . .] stand
for the Fourier transformation and the usual retarded op-
erator, respectively. 〈. . .〉 indicates the thermal average
in the grand canonical ensemble. The solution of equa-
tion (3.15), by taking into account the retarded boundary
conditions, is the following

G (k, ω) =
4∑

n=1

σ(n)(k)
ω − En(k) + iδ

. (3.16)

The spectral weights σ(n)(k) can be computed by
means of the following expression

σ
(n)
ab (k) = Λan

∑
c

Λ−1
nc Icb(k) (3.17)

where Λ is a matrix whose columns are the eigenvectors
of the energy matrix ε(k).

The energy spectra En(k) are the eigenvalues of the
energy matrix ε(k)

E1(k) = −µ− 2tα(k)
E2(k) = −µ− 2tα(k) + U

E3(k) = −µ+ 2tα(k) − 4JU
E4(k) = −µ+ 2tα(k) + 4JU + U (3.18)

where JU = 1
8

(√
U2 + 64t2 − U

)
. It is worth noting that

limU�t JU = 4t2

U which is the value of J we get from
the derivation of the t-J model from the Hubbard one in
the strong coupling regime. One can easily check that the
energy spectra En(k) represent the energy of the single-
particle transitions among the eigenstates given in Ap-
pendix A.

The normalization matrix I(k) has the structure

I(k) =




I11 0 I13(k) 0
0 I22 0 I24(k)

I13(k) 0 I33(k) 0
0 I24(k) 0 I44(k)


 . (3.19)
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The explicit form of its entries are

I11 = 1 − n

2
I22 =

n

2
I13(k) = ∆+ α(k)(p − I22)
I24(k) = −∆− α(k)p
I33(k) = −2(p− I22) − 2α(k)∆
I44(k) = I22 (3.20)

with

n = 〈n(i)〉 (3.21a)

∆ =
〈
ξα(i)ξ†(i)

〉
−
〈
ηα(i)η†(i)

〉
(3.21b)

p =
1
4
χα − d (3.21c)

χα =
3∑

µ=0

〈
nαµ(i)nµ(i)

〉
(3.21d)

d =
〈
ξ↑(i)η↓(i)[η

†
↓(i)ξ

†
↑(i)]

α
〉
. (3.21e)

∆ gives a measure of the difference in mobility between the
two Hubbard subbands. p contains charge, spin and pair
correlation functions. In order to compute the electronic
Green’s function Gcc =

〈
R
[
cc†

]〉
= G11 + 2G12 +G22 we

only need the following quantities

σ
(1)
11 (k) = I11 +

1
2
α(k)I13(k)

σ
(2)
11 (k) = 0

σ
(3)
11 (k) = −1

2
α(k)I13(k)

(
1 − 4JU

U + 8JU

)

σ
(4)
11 (k) = −1

2
α(k)I13(k)

4JU
U + 8JU

(3.22)

σ
(1)
12 (k) = σ

(2)
12 (k) = 0

σ
(3)
12 (k) = −σ(4)

12 (k) = −I13(k)
2t

U + 8JU
(3.23)

σ
(1)
22 (k) = 0

σ
(2)
22 (k) = I22 +

1
2
α(k)I13(k)

σ
(3)
22 (k) = −1

2
α(k)I13(k)

4JU
U + 8JU

σ
(4)
22 (k) = −1

2
α(k)I13(k)

(
1 − 4JU

U + 8JU

)
. (3.24)

Equation (3.16) does not define uniquely the Green’s
function, but only its functional dependence [11]. The
knowledge of the spectral weights σ(n)(k) and the spec-
tra En(k) requires the determination of the parameters ∆
and p, together with that of the chemical potential µ. The
connection between the parameter ∆ and the elements of
the Green’s function and the equation fixing the filling al-
low us to determine these two parameters as functions of

the parameter p {
n = 2(1 − C11 − C22)

∆ = Cα11 − Cα22
(3.25)

where the correlation functions Cab =
〈
ψa(i)ψ

†
b(i)

〉
and

Cαab =
〈
ψαa (i)ψ†

b(i)
〉

can be computed, after the spectral
theorem, by means of the following equations

Cab =
1
4

∑
k

4∑
n=1

[1 + Tn(k)]σ
(n)
ab (k)

Cαab =
1
4

∑
k

4∑
n=1

α(k)[1 + Tn(k)]σ
(n)
ab (k) (3.26)

with

Tn(k) = tanh
(
En(k)

2T

)
. (3.27)

The presence of parameters related to bosonic correla-
tion functions within the fermionic dynamics (e.g., the pa-
rameter p) is characteristic of strongly correlated systems.
In these systems, the elementary fermionic excitations are
described by composite operators whose non-canonical an-
ticommutation relations contain bosonic operators. Then,
according to the general projection procedure, which is
approximate for an infinite (i.e., with infinite degrees of
freedom) system and coincident with the exact diagonal-
ization for a finite system, the energy and normalization
matrices generally contain correlation functions of these
bosonic operators.

The parameter p could be computed through its def-
inition (see Eq. (3.21c)). In this case we need to open
the bosonic sector (i.e., the charge, spin and pair chan-
nels), to determine the eigenoperators and the normaliza-
tion and energy matrices and to require the complete self-
consistency between the fermionic and the bosonic sectors.
Moreover, we run into the problem of fixing the value of
the zero-frequency constants [25]. This procedure will be
widely discussed in the next section where the bosonic
sector and the relative channels will be opened and com-
pletely solved. However, we can use another procedure to
fix the parameter p without resorting to the bosonic sec-
tor. We have to think over the reason why the parame-
ters µ, ∆ and p appear into our equations: we have not
fixed yet the representation of the Hilbert space where the
Green’s functions are realized. The proper representation
is the one where all the relations among operators coming
from the algebra (e.g., n2

σ = nσ) and the symmetries (e.g.,
particle-hole, spin rotation, ...) are verified as relations
among matrix elements. In the case of usual electronic op-
erators the representation is fixed by simply determining
the value of the chemical potential. In the case of compos-
ite fields, which do not satisfy canonical anticommutation
relations, fixing the representation is more involved and
the presence of internal parameters (e.g., µ, ∆ and p) is
essential to the process of determining the proper repre-
sentation. The requirement that the algebra is satisfied
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also at macroscopic level generates a set of self-consistent
equations, the local algebra constraints, that will fix the
value of the internal parameters [11].

In particular, for the 2-site system the equation

〈ξ(i)η†(i)〉 = 0 (3.28)

coming from the algebra constraint ξ(i)η†(i) = 0, together
with equations (3.25) constitute a complete set of self-
consistent equations which exactly solves the fermionic dy-
namics allowing to compute the internal parameters (i.e.,
µ, ∆ and p) for any value of the model (t, U) and ther-
modynamical (n, T ) parameters. This procedure is clearly
extremely simpler than that requiring the opening of the
bosonic sector. It is worth mentioning that the system of
self-consistent equations can be analytically solved as re-
gards the parameters ∆ and p as functions of the chemical
potential µ. It is possible to show that the equation for this
latter parameter, as function of the internal (i.e., model
and thermodynamical) parameters, exactly agrees with
that coming from the thermal averages (cf. Eq. (A.42))
as it should be since the model is exactly solved. This fur-
ther confirms the validity, the effectiveness and the power
of the method used to fix the representation.

In the next section, we will see that also in the case of
the bosonic sector, the determination of the proper rep-
resentation will be obtained by means of the local al-
gebra constraints which will fix the value of the zero-
frequency constants. It will be also shown that the two
procedures for computing the parameter p are equivalent,
as it should be, and give exactly the same results for the
fermionic dynamics although with remarkably different ef-
fort. It is worth noticing that the use of the local algebra
constraints, which is unavoidable to fix the representation
both in the fermionic and in the bosonic sectors [11], per-
mits to close the fermionic sector on itself without resort-
ing to the bosonic one also in the lattice case [10] where
a fully self-consistent solution of both sectors, although
approximate, is very difficult to obtain.

3.2.2 The t-J model

In the t-J model, the energy spectra (i.e., the eigenvalues
of ε(k)) read as

E1(k) = −µ− 2tα(k)
E2(k) = −µ+ 2tα(k) − 4J. (3.29)

In particular, E2(k) corresponds to the single-particle
transitions between the single occupied states and the
2-site singlet. The latter is the ground state at half fill-
ing. ζ(k) drives the corresponding fermionic excitation be-
tween the single occupied states and the 2-site singlet and
the appearance of the most relevant scale of energy at low
temperatures J .

The normalization matrix I(k) has the following en-
tries

I11 = 1 − n

2

I12(k) = Cα11 + α(k)
(

1
4
χα − n

2

)
I22(k) = −2I12(k). (3.30)

In the t-J model the spin and charge correlator χα is de-
fined as χα =

∑3
µ=0

〈
ναµ (i)νµ(i)

〉
in agreement with the

strong coupling nature of the model. The spectral weights
σ(n)(k) have the following expressions

σ
(1)
11 (k) = I11 +

1
2
I12(k)

σ
(2)
11 (k) = −1

2
I12(k) (3.31)

σ
(1)
12 (k) = 0

σ
(2)
12 (k) = I12(k) (3.32)

σ
(1)
22 (k) = 0

σ
(2)
22 (k) = I22(k). (3.33)

Also in this case, as for the Hubbard model, we could
compute χα opening the bosonic sector for the t-J model.
Again, following the reasoning given in the previous sec-
tion, a simpler and completely equivalent procedure relies
on the exploitation of the algebra constraint ζ(i)ζ†(i) =
−2ζ(i)ξ†(i). According to this, the parameters µ and χα

can be computed by means of the following set of self-
consistent equations{

n = 1 − C11

C22 = −2C12.
(3.34)

4 The bosonic sector

4.1 The equations of motion and the basis

4.1.1 The Hubbard model

a. The spin and charge sectors. After the Hubbard Hamil-
tonian (Eq. (2.1)), the charge (µ = 0) and spin (µ = 1, 2,
3) density operator nµ(i) = c†(i)σµc(i) satisfies a closed
set of equations of motion, which describes the spin and
charge dynamics in the system under study, once we
choose as basic field

φµ(i) =




φ
(1)
µ (i)
φ

(2)
µ (i)
φ

(3)
µ (i)
φ

(4)
µ (i)
φ

(5)
µ (i)
φ

(6)
µ (i)




=




nµ(i)
gµ(i)

wµ(i) + w†
µ(i)

wµ(i) − w†
µ(i)

hµ(i) − h†µ(i)
hµ(i) + h†µ(i)




(4.1)
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ωp(k) =




U − 2µ −2t [1 + α(k)] 0 0 0 0
−2t [1 + α(k)] −2µ U 0 0 0

0 0 U − 2µ −2t [1 + α(k)] U 0
0 0 −2t [1 + α(k)] U − 2µ 0 0
0 0 0 0 2(U − µ) −2t [1 + α(k)]
0 0 0 0 −2t [1 + α(k)] U − 2µ


 . (4.18)

where

gµ(i) = c†(i)σµcα(i) − cα†(i)σµc(i) (4.2)
wµ(i) = dµ(i) − dαµ(i) (4.3)

hµ(i) = fµ(i) − fαµ (i) (4.4)

dµ(i) = ξ†(i)σµηα(i) (4.5)

f0(i) = −η†(i)η(i) − d†0(i)d
α
0 (i)

+ η†(i)η(i)ξα†(i)ξα(i) (4.6)

fk(i) = ξ†(i)ξ(i)nαk (i) − 1
2
iεkpqnq(i)nαq (i). (4.7)

The components of φµ(i), suggested by the hierarchy of
the equations of motion, are either hermitian or anti-
hermitian as densities or currents should be at any order in
time differentiation. φµ(i) satisfies the following equation
of motion in momentum space

i
∂

∂t
φµ(k) = ωb(k)φµ(k) (4.8)

where

ωb(k) =




0 −2t 0 0 0 0
−4t[1 − α(k)] 0 U 0 0 0

0 0 0 U 2t 0
0 0 U 0 0 2t
0 0 8t 0 0 0
0 0 0 8t 0 0


 . (4.9)

b. The pair channel. Within the analysis of the dynamics
of the Hubbard model, another relevant bosonic operator
is the pair operator p(i) = c↑(i)c↓(i). The set of composite
fields

P (i) =




P (1)(i)
P (2)(i)
P (3)(i)
P (4)(i)
P (5)(i)
P (6)(i)




(4.10)

where

P (1)(i) = p(i) (4.11)

P (2)(i) = c↑(i)cα↓ (i) (4.12)

P (3)(i) = c↑(i)ηα↓ (i) + η↑(i)cα↓ (i) (4.13)

P (4)(i) = p(i)nα(i) (4.14)

P (5)(i) = 2η↑(i)ηα↓ (i) (4.15)

P (6)(i) = p(i)ηα†(i)ηα(i) (4.16)

satisfies the following closed set of equations of motion

i
∂

∂t
P (k) = ωp(k)P (k) (4.17)

where

See equation (4.18) above

4.1.2 The t-J model

The basis for the bosonic sector in the t-J model is
given by

ϕ(i) =

(
ϕ

(1)
0 (i)
ϕ

(2)
0 (i)

)
(4.19)

for the charge channel, and by

ϕk(i) =



ϕ

(1)
k (i)
ϕ

(2)
k (i)
ϕ

(3)
k (i)
ϕ

(4)
k (i)


 (4.20)

for the spin channel. We have defined

ϕ(1)
µ (i) = νµ(i) (4.21)

ϕ(2)
µ (i) = ξ†(i)σµξα(i) − ξ†α(i)σµξ(i) (4.22)

ϕ
(3)
k (i) = ν(i)ναk (i) (4.23)

ϕ
(4)
k (i) = iεkpqνp(i)ναq (i). (4.24)

In the momentum space we have the following closed
sets of equations of motion

i
∂

∂t
ϕ(q) = ωc(q)ϕ(q) (4.25)

i
∂

∂t
ϕk(q) = ωs(q)ϕk(q) (4.26)

with

ωc(q) =
(

0 −2t
−4t[1 − α(q)] 0

)
(4.27)

and

ωs(q) =




0 −2t 0 −2J
−4t[1 − α(q)] 0 −4t[1 − α(q)] 0

0 0 0 2J
0 0 4J [1 − α(q)] 0


 .

(4.28)
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σ
(1)
11µ(k) = −σ

(2)
11µ(k) =

√
1 − α(k)

[
U
{

tq(µ) [1 + α(k)] + 4U [1 − α(k)] Cα
12

}
+ 2Cα

{
8 [1 + α(k)]2 t2 − U2 [1 − α(k)]

}]
√

2
{
8 [1 + α(k)]2 t2 − U2 [1 − α(k)]

} (4.48)

σ
(3)
11µ(k) = −σ

(6)
11µ(k) =

4tU [1 − α(k)]
[
4(U + 4JU )Cα

12 − tq(µ)
]

(U + 8JU ) {16t2 [1 + α(k)] + 2U(U + 4JU )} (4.49)

σ
(4)
11µ(k) = −σ

(5)
11µ(k) = −

4tU [1 − α(k)]
[
16JU Cα

12 + tq(µ)
]

(U + 8JU ) {16t2 [1 + α(k)] − 8UJU} (4.50)

4.2 The Green’s function

In reference [11], we have shown that the retarded and
causal Green’s functions contain substantially different in-
formation according to the unavoidable presence of the
zero frequency constants (ZFC). In particular, we have re-
ported on the relations between different types of Green’s
functions and on the correct order in which they should
be computed. According to this, in the bosonic sector,
we have to start from the causal Green’s function and not
from the retarded one, as we correctly did in the fermionic
sector.

4.2.1 The Hubbard model

a. The spin and charge sectors. After equation (4.8),
the thermal causal Green’s function Gµ (k, ω) =
F
〈
T
[
φµ(i)φ†µ(j)

]〉
satisfies the following equation

[ω − ωb (k)]Gµ (k, ω) = Iµ(k) (4.29)

where the relevant entries of the normalization matrix
Iµ(k) = F

〈[
φµ(i), φ†µ(j)

]〉
E.T.

are

I11µ(k) = 0 (4.30)
I12µ(k) = 4[1 − α(k)]Cαcc (4.31)
I13µ(k) = 0 (4.32)
I14µ(k) = 8[1 − α(k)]Cα12 (4.33)

I15µ(k) = −[1 − α(k)]q(µ) (4.34)
I16µ(k) = 0 (4.35)

with

Cαcc =
〈
cα(i)c†(i)

〉
(4.36)

q(0) = 16d (4.37)

q(k) =
8
3
χαs (4.38)

χαs =
3∑

k=1

〈nαk (i)nk(i)〉 (4.39)

T [. . .] stands for the usual time ordering operator.

The solution of equation (4.29) is the following one [11]

Gµ (k, ω) = −2iπΓµ(k)δ(ω)

+
6∑′

i=1

σ
(i)
µ (k)

1 − e−βω

[
1

ω − Eib(k) + iδ
− e−βω

ω − Eib(k) − iδ

]
(4.40)

where

Γµ(k) =
1
2

lim
ω→0

ω

×F
[
θ(ti − tj)

〈
φµ(i)φ†µ(j)

〉
− θ(tj − ti)

〈
φ†µ(j)φµ(i)

〉]
(4.41)

is the zero frequency function and is undetermined at this
level unless to compute the quite anomalous Green’s func-
tion appearing in its definition, which involves anticom-
mutators of bosonic operators [11]. The general definition
of a zero frequency function in terms of eigenvectors and
eigenvalues is given in equation (A.12). The primed sum
is restricted to values of i for which Eib(k) �= 0.

The Eib(k) are the eigenvalues of the energy ma-
trix ωb (k)

E1b(k) = −2t
√

2[1 − α(k)] (4.42)

E2b(k) = 2t
√

2[1 − α(k)] (4.43)
E3b(k) = −U − 4JU (4.44)
E4b(k) = −4JU (4.45)
E5b(k) = 4JU (4.46)
E6b(k) = U + 4JU . (4.47)

According to this, the primed sum in equation (4.40) does
not contain the i = 1 and i = 2 elements for k = 0
(E1,2b(0) = 0) and the zero frequency function Γµ(k) re-
duces to the constant Γµ = Γµ(0). The spectral weights
σ

(i)
abµ(k) with a and b = 1, 2, computed through equa-

tion (3.17) have the following expressions

See equations (4.48, 4.49, 4.50) above

and

σ
(i)
12µ(k) = −Eib(k)

2t
σ

(i)
11µ(k) (4.51)

σ
(i)
22µ(k) = −Eib(k)

2t
σ

(i)
12µ(k) =

(
Eib(k)

2t

)2

σ
(i)
11µ(k).

(4.52)
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We note the sum rules

6∑
i=1

σ
(i)
abµ(k) = Iabµ(k). (4.53)

In order to finally compute the Green’s function
G11µ (k, ω) we should fix the internal parameters χαs , d
and the zero frequency constant Γ11µ.

The parameter χαs is directly connected to the
Green’s function. Let us consider the correlation function
Dµ (k, ω) = F

〈
φµ(i)φ†µ(j)

〉
which is linked to the causal

Green’s function through the spectral theorem

Dµ (k, ω) = −
(
1 + tanh

ω

2T

)
� [Gµ (k, ω)]

= 2πΓµδ(ω) + 2π
6∑′

i=1

δ [ω − Eib(k)]
σ

(i)
µ (k)

1 − e−βEib(k)
.

(4.54)

Then,

χαs = 3
〈
φ

(1)
3 (i)φ(1)α

3 (i)
〉
. (4.55)

The computation of the parameter d requires instead
the opening of the pair sector. Otherwise, it could be com-
puted through the following relation with the parameter p

d =
1
4
χα − p (4.56)

already given in the fermionic sector (see Eq. (3.21c)),
once we note that χα = χαs +

〈
φ

(1)
0 (i)φ(1)α

0 (i)
〉
.

The zero frequency constant Γ11µ cannot be directly
connected to any correlation function at this level and its
determination requires the use of local algebra constraints.
In particular, we can use the following relation

〈
φ(1)
µ (i)φ(1)

µ (i)
〉

= 〈nµ(i)nµ(i)〉 = n+2D(2δµ0−1) (4.57)

where the double occupancy D = 〈n↑(i)n↓(i)〉 is given by
D = I22 − C22.

Equations (4.55, 4.56) and (4.57) constitute a complete
set of self-consistent equations which allow to compute
the parameters χαs , d and Γ11µ and then to determine the
Green’s function G11µ (k, ω).

It is worth noting that, once Cαcc, C
α
12, p and D are

computed in the fermionic sector, the bosonic correlation
functions can be easily obtained. We have the following
expressions for the relevant correlators and zero-frequency

constants

χαs = 3
n− 2D − 2a

1 + 2b
(4.58)

χαc =
〈
φ

(1)
0 (i)φ(1)α

0 (i)
〉

= n+ 2D − 2a

− b

1 + b

[
3(n− 2D − 2a)

1 + 2b
+ n+ 2D − 2a− 4p

]
(4.59)

d =
1

4(1 + b)

[
3(n− 2D − 2a)

1 + 2b
+ n+ 2D − 2a− 4p

]
(4.60)

Γ110 =
1

1 + b
[2n+ 4D − 2a

+b(n+ 2D − 3
n− 2D − 2a

1 + 2b
+ 4p

]
(4.61)

Γ113 =
2(n− 2D)(1 + b) − 2a

1 + 2b
(4.62)

where

a = −(Cαcc − 2Cα12) coth
2t
T

+
8tCα12
U + 8JU

[
coth

E3b(π)
2T

+ coth
E4b(π)

2T

]
(4.63)

b = − 4JU
U + 8JU

coth
E3b(π)

2T
+
U + 4JU
U + 8JU

coth
E4b(π)

2T
.

(4.64)

Taking into account the following local algebra con-
straints

D120 (i, i) =
〈
n(i)g†(i)

〉
= 2Cαcc (4.65)

D220 (i, i) =
〈
g(i)g†(i)

〉
= 2n− χα − 4d

= 2(n− 4d− 2p) = 2(n− χα + 2p) (4.66)

D123 (i, i) =
〈
n3(i)g

†
3(i)

〉
= 2Cαcc (4.67)

D223 (i, i) =
〈
g3(i)g

†
3(i)

〉
= 2n+

1
3
χαs − χαc + 4d

= 2(n− 2
3
χαs − 2p) (4.68)

and performing similar calculations we can also obtain (we
omit the expressions of Γ22µ for the sake of brevity)

〈
nα(i)g†(i)

〉
= −2Cαcc (4.69)〈

gα(i)g†(i)
〉

= −2(n− 4d− 2p) (4.70)

Γ12µ = 0. (4.71)

b. The pair channel. After equation (4.17), the thermal
causal Green’s function Gp (k, ω) = F

〈
T
[
P (i)P †(j)

]〉
satisfies the following equation

[ω − ωp (k)]Gp (k, ω) = Ip(k) (4.72)
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where the relevant entries of the normalization matrix
Ip(k) = F

〈[
P (i), P †(j)

]〉
E.T.

are

I11p(k) = 1 − n (4.73)
I12p(k) = [1 + α(k)]Cαcc (4.74)
I13p(k) = I12p(k) (4.75)
I14p(k) = n− χαc + 2dα(k) (4.76)
I15p(k) = 2[1 + α(k)]Cα12 (4.77)
I16p(k) = 2D − 2γ + 2dα(k) (4.78)

where γ = 〈nα(i)n↑(i)n↓(i)〉.
The solution of equation (4.72) is the following one [11]

Gp (k, ω) = −2iπΓp(k)δ(ω)

+
6∑′

i=1

σ
(i)
p (k)

1 − e−βω

[
1

ω − Eip(k) + iδ
− e−βω

ω − Eip(k) − iδ

]
(4.79)

where

Γp(k) =
1
2

lim
ω→0

ω

×F
[
θ(t− t′)

〈
P (i)P †(j)

〉
− θ(t′ − t)

〈
P †(j)P (i)

〉]
.

(4.80)

The primed sum is again restricted to values of i for which
Eip(k) �= 0.

The Eip(k) are the eigenvalues of the energy matrix
ωp (k)

E1p(k) = −2µ+ U − 2t[1 + α(k)] (4.81)
E2p(k) = −2µ+ U + 2t[1 + α(k)] (4.82)

E3p(k) = −2µ+
1
2
[U −Q(k)] (4.83)

E4p(k) = −2µ+
1
2
[3U −Q(k)] (4.84)

E5p(k) = −2µ+
1
2
[U +Q(k)] (4.85)

E6p(k) = −2µ+
1
2
[3U +Q(k)] (4.86)

with Q(k) =
√
U2 + 16t2[1 + α(k)]2. The Eip(k) are zero

only in isolated points of the parameter space (n, T , U)
(see Eqs. (4.81–4.86)). According to this, the zero fre-
quency function Γp(k) is identically zero except in these
points, where it could be finite. In this treatment, for the
sake of simplicity, we neglect these isolated points.

The spectral weights σ(i)
11p(k), computed through equa-

tion (3.17), have the following expressions

σ
(1)
11p(k) =

1
2
[I13p(k) + I14p(k) − I15p(k) − I16p(k)]

(4.87)

σ
(2)
11p(k) =

1
2
[−I13p(k) + I14p(k) + I15p(k) − I16p(k)]

(4.88)

σ
(3)
11p(k) =

t[1 + α(k)]
Q(k)

I15p(k)

+
Q(k) − U

4Q(k)
[2I11p(k) − 2I14p(k) + I16p(k)]

(4.89)

σ
(4)
11p(k) =

t[1 + α(k)]
Q(k)

I15p(k) +
Q(k) + U

4Q(k)
I16p(k) (4.90)

σ
(5)
11p(k) = − t[1 + α(k)]

Q(k)
I15p(k)

+
Q(k) + U

4Q(k)
[2I11p(k) − 2I14p(k) + I16p(k)]

(4.91)

σ
(6)
11p(k) = − t[1 + α(k)]

Q(k)
I15p(k) +

Q(k) − U

4Q(k)
I16p(k)

(4.92)

In order to finally compute the Green’s function
G11p (k, ω) we should fix the internal parameter γ. The de-
termination of the parameter γ requires the computation
of another Green’s function GD(k, ω) = F 〈T [n(i)D(j)]〉,
where D(i) = n↑(i)n↓(i). Otherwise, we could resort to
the following local algebra constraint〈

p(i)p†(i)
〉

= 1 − n+D. (4.93)

It is worth noting that within the pair channel we can
also compute the parameter d directly from its definition:
d =

〈
pα(i)p†(i)

〉
. This finally opens the possibility to com-

pute fully self-consistently the fermionic and bosonic sec-
tors at once. It can be shown that the two procedures (the
fully self-consistent one and the one presented at length
in the previous sections) give exactly the same results, as
it should be according to the exact nature of the proposed
treatment.

4.2.2 The t-J model

After equations (4.25), the thermal causal Green’s func-
tions Gc (q, ω) = F

〈
T
[
ϕ(i)ϕ†(j)

]〉
and Gsk (q, ω) =

F
〈
T
[
ϕk(i)ϕ

†
k(j)

]〉
satisfy the following equations

[ω − ωc (q)]Gc (q, ω) = Ic(q) (4.94)

[ω − ωs (q)]Gsk (q, ω) = Is(q) (4.95)

where the relevant entries of the normalization
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matrices Ic(q) = F
〈[
ϕ(i), ϕ†(j)

]〉
E.T.

and Is(q) =

F
〈[
ϕk(i), ϕ

†
k(j)

]〉
E.T.

are

I11c(q) = 0 (4.96)
I12c(q) = 4 [1 − α(q)]Cα11 (4.97)
I22c(q) = 0 (4.98)

and

I11s(q) = 0 (4.99)
I12s(q) = 4 [1 − α(q)]Cα11 (4.100)
I13s(q) = 0 (4.101)

I14s(q) =
4
3

[1 − α(q)]χαs (4.102)

with

χαs =
3∑

k=1

〈ναk (i)νk(i)〉 . (4.103)

The spin rotational invariance makes Gsk independent
from the index k. According to this and for the sake of
simplicity, we have omitted in the text the index k in the
expressions of the related quantities: Is, Es, σs and Γs.

The general solutions of equations (4.94) are the fol-
lowing ones [11]

Gc (q, ω) = −2iπΓc(q)δ(ω)

+
2∑′

i=1

σ
(i)
c (q)

1 − e−βω

[
1

ω − Eic(q) + iδ
− e−βω

ω − Eic(q) − iδ

]
(4.104)

Gsk (q, ω) = −2iπΓs(q)δ(ω)

+
4∑′

i=1

σ
(i)
s (q)

1 − e−βω

[
1

ω − Eis(q) + iδ
− e−βω

ω − Eis(q) − iδ

]
(4.105)

where

Γc(q) =
1
2

lim
ω→0

ω

×F
[
θ(t− t′)

〈
ϕ(i)ϕ†(j)

〉
− θ(t′ − t)

〈
ϕ†(j)ϕ(i)

〉]
(4.106)

Γs(q) =
1
2

lim
ω→0

ω

×F
[
θ(t− t′)

〈
ϕk(i)ϕ

†
k(j)

〉
− θ(t′ − t)

〈
ϕ†
k(j)ϕk(i)

〉]
.

(4.107)

The primed sum is again restricted to values of i for which
Eic,s(k) �= 0.

The Eic(q) and Eis(q) are the eigenvalues of the energy
matrices ωc(q) and ωs(q), respectively

E1c(q) = 2t
√

2[1 − α(q)] (4.108)

E2c(q) = −2t
√

2[1 − α(q)] (4.109)

and

E1s(q) = 2t
√

2[1 − α(q)] (4.110)

E2s(q) = −2t
√

2[1 − α(q)] (4.111)

E3s(q) = 2J
√

2[1 − α(q)] (4.112)

E4s(q) = −2J
√

2[1 − α(q)] (4.113)

According to this, the primed sums in equations (4.104) do
not contain the elements for q = 0 and the zero frequency
functions Γc,s(q) reduce to the constants Γc = Γc(0) and
Γs = Γs(0), respectively. The spectral weights σ

(i)
c,s(k),

computed through equation (3.17) have the following ex-
pressions

σ
(1)
11c(q) = −σ(2)

11c(q) = −Cα11
√

2
√

1 − α(q) (4.114)

σ
(1)
12c(q) = σ

(2)
12c(q) = 2Cα11 [1 − α(q)] (4.115)

σ
(1)
22c(q) = −σ(2)

22c(q) = −2
√

2Cα11 [1 − α(q)]
3
2 (4.116)

σ
(1)
11s(q) = −σ(2)

11s(q) = −Cα11
√

2
√

1 − α(q) (4.117)

σ
(3)
11s(q) = −σ(4)

11s(q) = −1
3
χαs

√
2
√

1 − α(q). (4.118)

In order to finally compute the Green’s function
Gc (q, ω) we should fix the zero frequency constant Γc.
This latter cannot be directly connected to any correla-
tion function at this level and its determination requires
the use of local algebra constraints. Let us consider the
correlation function Dc (q, ω) = F

〈
ϕ(i)ϕ†(j)

〉
which is

linked to the causal Green’s function through the spectral
theorem

Dc (q, ω) = −
(
1 + tanh

ω

2T

)
� [Gc (q, ω)]

= 2πΓcδ(ω) + 2π
2∑′

i=1

δ [ω − Eic(q)]
σ

(i)
c (q)

1 − e−βEic(q)
.

(4.119)

Then, we can use the following relations in order to com-
pute Γc

D11c (i, i) = 〈ν(i)ν(i)〉 = n (4.120)

D12c (i, i) =
〈
ν(i)Π†(i)

〉
= 2Cα11 (4.121)

D22c (i, i) =
〈
Π(i)Π†(i)

〉
= 2 (n− χαc ) (4.122)

χαc is directly connected to the Green’s function

χαc = 〈ν(i)να(i)〉 . (4.123)

In order to finally compute the Green’s function
G11s (k, ω) we should fix the internal parameter χαs and
the zero frequency constant Γ11s.

The parameter χαs is directly connected to the
Green’s function. Let us consider the correlation function
Dsk (q, ω) = F

〈
ϕk(i)ϕ

†
k(j)

〉
which is linked to the causal
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Green’s function through the spectral theorem

Dsk (q, ω) = −
(
1 + tanh

ω

2T

)
� [Gsk (q, ω)]

= 2πΓsδ(ω) + 2π
4∑′

i=1

δ [ω − Eis(q)]
σ

(i)
s (q)

1 − e−βEis(q)
.

(4.124)

Then,
χαs = 3 〈ν3(i)να3 (i)〉 . (4.125)

The zero frequency constant Γs cannot be directly con-
nected to any correlation function at this level and its de-
termination requires the use of local algebra constraints.
In particular, we can use the following relation

D11sk (i, i) = 〈ν3(i)ν3(i)〉 = n. (4.126)

Equations (4.125) and (4.126) constitute a complete
set of self-consistent equations which allow to compute
the Green’s function G11sk (q, ω).

We have the following expressions for the relevant zero
frequency constants and correlators

Γ11c = n+ coth
2t
T
Cα11 (4.127)

Γ12c = 0 (4.128)
Γ22c = 0 (4.129)

Γ11s = 3n+ 3 coth
2t
T
Cα11 + coth

2J
T
χαs (4.130)

χαc = n+ 2 coth
2t
T
Cα11 (4.131)〈

να(i)Π†(i)
〉

= −2Cα11 (4.132)〈
Πα(i)Π†(i)

〉
= 4 coth

2t
T
Cα11 (4.133)

χαs =
3n+ 6 coth 2t

T C
α
11

1 − 2 coth 2J
T

=
3χαc

1 − 2 coth 2J
T

. (4.134)

5 The results

In the previous two sections, we have given a detailed
summary of the analytical calculations which lead to
computable expressions for internal parameters, zero fre-
quency constants, correlation and response functions for
the fermionic and bosonic (charge, spin and pair) sectors
of the Hubbard and t-J models. In this section, we analyze
the related results for the local, single-particle, thermody-
namical and response properties. Hereafter, t will be used
as energy scale.

5.1 The ∆ and p parameters

The ∆ and p parameters are computed by solving the
system of self-consistent equations (3.25) and (3.28). The
behavior of ∆, as function of the filling n, is shown in

∆

ξαξ
ηαη

α

Fig. 1. (top) The ∆ parameter as function of the filling n for
T = 1 and U = 0, 2, 4, 8, 12 and 16 (inset: ξ and η components
for T = 1 and U = 4); (bottom) Cα

11 as function of the filling
n for T = 2 and J = 0.05, the ED data (4 × 4) are for T = 0
and from reference [26].

Figure 1 (top panel). ∆ is defined as the difference be-
tween the hopping amplitudes computed between empty
and singly occupied sites (i.e., 〈ξ(i)ξ†(i)〉) and between
singly and doubly occupied sites (i.e., 〈η(i)η†(i)〉). In this
sense, ∆ gives a measure of the electron mobility. The
following features have been observed: the hopping ampli-
tude coming from ξ (η) prevails below (above) half-filling
and is always negative (see inset Fig. 1 (top panel)); the
absolute value of ∆ diminishes on increasing the tempera-
ture T and on decreasing the Coulomb repulsion U . Below
half filling, the electrons move preferably among empty
and single occupied sites; the same happens to the holes
above half filling. This explains the prevalence of one hop-
ping amplitude per each region of filling. In addition, by
decreasing the temperature or by increasing the Coulomb
repulsion we can effectively reduce the number of doubly
occupied sites present in the system and, consequently, fa-
vor the mobility of the electrons and increase the absolute
value of∆. These are also the reasons behind the filling de-
pendence: its absolute value first increases with the num-
ber of available almost free moving particles (n � 0.5),
then decreases when the number of particles is such to
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Fig. 2. The p parameter as function of the filling n for T = 0
and T = 2 at U = 0 and U = 4.

allow some double occupancies and to force the reduction
of the number of empty sites (0.5 � n � 1) and finally
vanishes when, in average, the sites are all singly occu-
pied (n = 1); the behavior above half filling is equivalent
and is related to the holes.

The behavior of Cα11 within the t-J model, as function
of the filling n, is shown in Figure 1 (bottom panel). Below
half filling and for rather high values of the Coulomb repul-
sion U , ∆ and Cα11 exactly coincide as the η component of
∆ completely vanishes. According to this, all the features
discussed above for the parameter ∆ are also observed for
Cα11 (J acts like 1/U). Anyway, we have to report a really
small dependence on the exchange interaction J that is
fully effective only at n = 1 where the mobility is already
zero as no empty site at all is left. It is worth noting that
the exact result for the 2-site system at T = 2 almost
exactly reproduces the Exact Diagonalization (ED) [26]
data for a 4 × 4 cluster at T = 0. This shows that, by
increasing the temperature in a 2-site system it is possible
to mime a cluster of bigger size at a lower temperature,
at least as regards some of its properties. This can be un-
derstood by thinking to the level spacing in the two cases
(i.e., bigger the cluster lower the spacing) and to the value
of temperature needed to excite those levels. Clearly, not
all the properties are in a so strong relation with the rela-
tive level positions, but depend on the absolute positions
of them. Anyway, this also shows that the relative energy
scales/levels are already present in the 2-site system. We
have used a value of J twice smaller than the one used
within the numerical analysis according to the difference,
between the 2-site system and any larger system, regard-
ing the value of the exchange energy J appearing in the
derivation of the t-J model from the Hubbard one [27].
Actually, the derivation is pathological just for the 2-site
system and gives a J larger of a factor 2.

As regards the p parameter, in Figure 2 we report
its dependence on filling n for two values of the on-site
Coulomb repulsion U = 0 and U = 4 and for two tem-
peratures T = 0 and T = 2. At low temperatures and for
n � 1.26, the value of the p parameter is mainly nega-

µ

µ

Fig. 3. The chemical potential µ as function of the filling n
(top) for U = 4 and T = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 and
(bottom) for U = 4, 12 and T = 1, 2. The FTL data (4 × 4)
are taken from reference [28].

tive according to the antiferromagnetic nature of the spin
correlations in the ground state; at higher temperatures
the antiferromagnetic spin correlations get weaker and the
sign of the parameter changes. The filling n, the temper-
ature T and the Coulomb interaction U rule the balance
between the spin, the charge and the pair correlations.

5.2 The chemical potential and the density of states

The chemical potential µ is one of the self-consistent pa-
rameters and has been computed by solving the system
of self-consistent equations (3.25) and (3.28). As a func-
tion of U the chemical potential increases for all stud-
ied values of temperature T and filling n. In particular,
we have the maximum increment for U � 20; for higher
values of U the chemical potential saturates. A similar
behavior has been reported by numerical data on larger
clusters [26,29–31]. In Figure 3, we show the filling de-
pendence of the chemical potential for some values of the
temperature T at U = 4 (top panel) and for U = 4, 12 and
T = 1, 2 (bottom panel). The Finite Temperature Lanczos
(FTL) data (4 × 4) are taken from reference [28]. At low
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temperatures, the chemical potential has a step-like be-
havior which recalls the discreteness of the energy levels.
At higher temperatures, the step-like feature is smeared
out due to the thermal hybridization of the energy lev-
els. It is again really noteworthy the agreement between
the 2-site results and the numerical data. No temperature
adjustment has shown to be necessary in this case as the
temperature is already quite high (cf. Fig. 12 (bottom)).
Generally, the agreement is better for high temperatures
and high values of the Coulomb repulsion. Anyway, there
is a competition between the temperature smearing effects
on the level spacing and the possibility to access the states
with energy JU at lower temperatures for higher values of
U (JU ∝ 1/U). Actually, the number of accessible states
is comparable for medium temperatures and too large for
very high temperatures. This should explain the devia-
tions for U = 4 and T = 1, and U = 12 and T = 2 at low
doping.

By looking at these plots we could be induced to con-
sider the possibility of a metal-insulator transition driven
by the Coulomb repulsion U and controlled by the tem-
perature T . Obviously, no such transition is possible in a
finite system that is always in a metal paramagnetic state
for any finite or zero value of the Coulomb repulsion U ;
we will show, in Section 5.8, that the Drude weight is al-
ways finite. Such tricky behavior of the chemical potential
can be understood by thinking at the nature of the grand
canonical ensemble we are using for our thermal averages.
As we are very far from the thermodynamic limit, there
is no equivalence at all among the micro-, the grand- and
the canonical ensembles. In particular, whenever we speak
about temperature and chemical potential in a finite sys-
tem we have just to think in terms of mixtures of quan-
tum mechanical states with different energies and numbers
of particles. To get a deeper comprehension of this issue
we can define a thermodynamic density of states NT (µ)
through the following equation

n =
∫ µ

−∞
dωNT (ω) (5.1)

which is a generalization to finite temperatures of the iden-
tical relation existing, at zero temperature, between the
filling n and the usual density of states N(ω). In general,
the two densities of states coincide only at zero tempera-
ture and for systems, like the non-interacting ones, whose
density of states is independent on the chemical potential
µ. From the definition (5.1), we can simply compute the
thermodynamic density of states NT (µ) by differentiat-
ing the filling n with respect to the chemical potential µ
[NT (µ) = dn/dµ]. It is worth mentioning that the ther-
modynamic density of states NT (µ), apart from a factor
1
n2 , is simply the compressibility of the system. A vanish-
ing value of this quantity denotes the impossibility for the
system to accept more particles and, obviously, the pres-
ence of a gap. The thermodynamic density of statesNT (µ)
enormously facilitates the comprehension of the chemi-
cal potential features that are singled out by the differ-
entiation procedure. The usual density of states N(ω) is

µ ω

µ

ω
δ

Fig. 4. The thermodynamic NT (µ) and the traditional N(ω)
(n = 1 and δ = 0.1) densities of states as functions of the scaled
chemical potential µ − U/2 and the frequency ω, respectively,
for T = 2 and U = 0, 8, 16 and 32.

computed as follows

N(ω) =
1
2

4∑
n=1

∑
k

δ[ω − En(k)]σ(n)
cc (k). (5.2)

Both densities of states are reported in Figures 4 and 5
as function of the chemical potential (µ) and the fre-
quency (ω), respectively. We have computed N(ω) by sub-
stituting, for obvious graphical reasons, the Dirac deltas
(δ(ω)) with Lorentzian functions ( 1

π
δ

ω2+δ2 ) with δ = 0.1.
In reporting the thermodynamic density of states NT (µ)
we have scaled the chemical potential µ by its value at
half filling (U/2) as we want to make the comparison for
this particular value of n. While N(ω) always presents a
gap at ω = 0 (the overlapping tails are due to the finite δ
and the non-zero kinetic energy ensures a metallic behav-
ior), NT (µ) shows a gap only above a certain value of the
Coulomb repulsion for a fixed T (see Fig. 4) and below a
certain temperature for a fixed U (see Fig. 5). We want
to emphasize that, at high temperature, NT (µ) is capa-
ble to mime the behavior expected for the lattice system.
In particular, NT (µ) presents two well defined structures
(i.e., the two Hubbard subbands) that continuously sepa-
rate on increasing U (see Fig. 4). This behavior is the one
expected, after many analytical and numerical results, for
the bulk at dimension greater than one and it is a real-
ization of the metal-insulator transition according to the
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µ ω

µ

ω

δ

Fig. 5. The thermodynamic NT (µ) and the traditional N(ω)
(n = 1 and δ = 0.1) densities of states as functions of the scaled
chemical potential µ − U/2 and the frequency ω, respectively,
for U = 8 and T = 0.02, 0.4, 0.8 and 2.

Mott-Hubbard mechanism. It is worth noting that, for this
small system, the critical Coulomb repulsion, at which the
gap appears, is a function of the temperature T .

The density of states N(ω) is also reported in order to
give an idea of the positions of the poles and of the relative
intensity of the spectral weights, although we had to cut
the highest peaks in drawing the pictures. We can observe
two relevant features. In the non-interacting case (U = 0)
only two poles/peaks are present; those coming from the
band E1(k) and separated by the bandwidth W = 4t. On
increasing the Coulomb potential U the three scales of
energy present in the system clearly manifest themselves:
the exchange interaction JU , the bandwidth W and the
Coulomb repulsion U . The eight poles group in two main
structures separated by U . Within any structure the four
poles are separated according to the combination of ±2t
(bandwidth separation) and the presence or absence of the
exchange interaction JU . The bandwidth W is obviously U
independent and generates a rigid two peak structure for
any band En(k). On the contrary, the exchange energy JU
decreases on increasing U with a consequent reduction of
the resolution of the peaks within the Hubbard subbands.
The other relevant feature is the redistribution of the to-
tal spectral weight on increasing the temperature. At low
temperatures the poles/peaks that do not contain the ex-

Fig. 6. The double occupancy D: (top) as function of the
filling n for U = 1, 2 and 4 at T = 1, the qMC data (12 × 12)
are for T = 1/6 and from reference [32]; (bottom) as function
of the Coulomb repulsion U for n = 0.5, 0.75 and 1 at T = 1,
the BA data are for T = 0.

change interaction JU have negligible spectral weights; the
2-site singlet is the ground state at half-filling. On increas-
ing temperature the total spectral weight redistributes and
the other poles get more and more spectral weight due to
the thermal hybridization of the energy levels.

5.3 The double occupancy D

In the non-interacting case (U = 0) we have D = n2/4.
At zero temperature, the double occupancy D vanishes
for n ≤ 0.5; below this value of filling we have, in aver-
age, less than one electron in the system and only for a
finite temperature we can get some contributions by states
with a finite double occupancy. At half filling we have the
following exact formula for the double occupancy at zero
temperature

D =
2JU

U + 8JU
. (5.3)

The filling dependence of the double occupancyD (top
panel) is reported in Figure 6 for several values of the
Coulomb repulsion U at temperature T = 2. There are
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also reported some quantum Monte Carlo (qMC) data [32]
for a bigger cluster (12× 12). As in the case of Cα11 within
the t-J model, we note that the exact results for the 2-
site system at temperature T = 1 very well reproduce the
quantum Monte Carlo (qMC) data for the bigger clus-
ter at T = 1/6. The same explanation obviously holds.
A comparison with the exact results from Bethe ansatz
(BA) are also reported in Figure 6 (bottom panel). Also
in this case the 2-site system manage to reproduce the
bigger cluster data (actually, the Bethe ansatz (BA) sys-
tem is the 1D bulk) by increasing the temperature. The
discrepancy at half filling can be understood as a conse-
quence of the difference in the definition of the exchange
energy J discussed in the section regarding the internal
energy. Obviously, the discrepancy is larger where the ex-
change interaction is mainly effective (i.e., at half filling
and for intermediate-strong values of the Coulomb inter-
action).

5.4 Thermodynamics

5.4.1 The energy E, the specific heat C and the entropy S

The energy per site E is computed as thermal average
of the Hamiltonian divided by the number of sites. Its
filling dependence is reported in Figure 7 (top panel) to-
gether with some Exact Diagonalization (ED) data for
bigger clusters [26]. As expected, the energy E increases
as the Coulomb repulsion U increases. For n < 1 and high
values of the Coulomb repulsion the kinetic term prevails
on the Coulomb one. The opposite behavior is observed
for n > 1. The behavior as a function of the temper-
ature T and Coulomb repulsion U are reported in Fig-
ure 7 (middle and bottom panels, respectively) together
with some data coming from numerical analysis for big-
ger clusters [26,32,33]. By using a higher temperature for
the 2-site data is again possible to get an extremely good
agreement with the numerical results (see Fig. 7 (top and
bottom panels)). In the case of the temperature behav-
ior instead, the agreement is obtained without tuning any
parameter (see Fig. 7 (middle panel)).

The discrepancy at half filling and low temperatures
(see Fig. 7 (middle panel)) is a consequence of the different
value of the exchange energy J appearing in the deriva-
tion of the 2-site t-J model from the Hubbard one (see
detailed discussion about the behavior of Cα11 reported in
Figure 3 (bottom panel), Sect. 5.1). According to this, at
half-filling and low temperatures we have also reported
the 2-site results for U = 24 and J = 1/6 (t-J model)
and obtained the expected agreement. The reason why no
effect is evident for lower fillings and high temperatures
is that the exchange interaction is really effective only at
half-filling (in average one spin per site is necessary) and
low temperatures (the fluctuations should be small).

In Figure 8 we show the temperature dependence of
the specific heat C = dE/dT for several values of U at
n = 0.75 and n = 1. For n �= 1 we have three peaks at
temperatures of the order half (0.3 ÷ 0.6) the scales of

Fig. 7. The energy E: (top) as function of the filling n for
T = 0.8 and U = 8, 10 and 20, the ED data (4 × 4) are for
T = 0 and from reference [26]; (middle) as function of the
temperature T for U = 12 and n = 0.5, 0.75 and 1 (U = 24
and J = 1/6 (t-J mode) data are also reported), the qMC data
(6× 6 and 8× 8) are from reference [33]; (bottom) as function
of the Coulomb repulsion U for n = 1 and T = 0.8, the ED
data (4 × 4) are for T = 0 and from reference [26], the qMC1
data (8× 8) are for T = 0.1 and from reference [33], the qMC2
data (12 × 12) are for T = 1/6 and from reference [32].
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Fig. 8. The specific heat C: as function of the temperature T
for n = 0.75 (top) (n = 1 (bottom)) and U = 0, 4, 8, 16, 24
and 32.

energies JU , t and U . This is in agreement with the be-
havior of a pure two- or three-gap system in the canonical
ensemble. The effect of increasing the Coulomb repulsion
U is a better resolution of the three peaks. In fact, the
first one moves towards lower temperatures, the second
one is stable and the third moves to higher temperatures;
this is in perfect agreement with their origins: 1/U , t and
U , respectively. At half filling nothing changes except for
the absence of the middle peak: the single occupied states
do not contribute. It is worth mentioning that the kinetic
peak appears as the energy levels corresponding to differ-
ent values of the momentum are here discrete as in any
finite system. No such a peak is present in infinite sys-
tems where the kinetic energy just spreads over a band
the energy levels coming from the interactions.

The specific heat C is a really valuable property to
quantify how good is the t-J model to describe the low
energy dynamics of the Hubbard model. We have studied
C as a function of both 4t2/U and J in the Hubbard
and t-J model, respectively. We need a Coulomb repulsion
U ≥ 24t (4t2/U ≤ 1

6 t) to have the possibility of a faithful
mapping at low temperatures; only for such values of U
we manage to sufficiently resolve the three scales of energy

Fig. 9. The specific heat C as function of the temperature T
for n = 0.75 and U = 32 and J = 0.125.

in the Hubbard model. For instance, at U = 32 ⇔ J =
0.125 the mapping can be absolutely trusted as shown in
Figure 9 where we report the specific heat for n = 0.75.
As regards the exchange and kinetic peaks the agreement
is perfect; obviously the t-J model cannot reproduce the
Coulomb peak, which is extraneous to its dynamics. The
absence of the kinetic peak at half filling is also perfectly
reproduced (see Fig. 11).

In Figure 10 (top panel) we report the behavior, in the
t-J model, of the specific heat as function of the temper-
ature T for different values of the exchange constant J . It
is worth mentioning that in the t-J model the two peaks
in the specific heat (i.e., the exchange and kinetic peaks)
can be easily studied separately as they just come from
the corresponding terms of the Hamiltonian. This simple
analysis cannot be performed in the Hubbard model where
the exchange peak gets contribution from both terms of
the Hamiltonian.

In Figure 10 (bottom panel) we report the entropy S
of t-J model computed by means of the usual thermody-
namic relations from the specific heat C

S(T ) =
∫ T

0

dT̃

T̃
C(T̃ ). (5.4)

We can easily put in correspondence the peaks of the spe-
cific heat [see Fig. 10 (middle panel)] and the change in
the slope of the entropy. Again, a lowering of the exchange
energy J helps resolving the scales of energy and makes
much more visible the difference in the slopes.

In Figure 11, it is reported the specific heat as a func-
tion of the temperature for the Hubbard model (top panel)
and the t-J model (bottom panel). For this latter, it has
been also reported the entropy. The Finite Temperature
Lanczos (FTL) data for the Hubbard model (4×4) and for
the t-J model (N = 20) are taken from reference [34] and
reference [35], respectively. The agreement is absolutely
noteworthy on the whole temperature range. Again, the
discrepancy at low temperatures in the Hubbard model
case is a consequence of the difference regarding the value
of the exchange energy J . According to this, we have also
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Fig. 10. (top) The specific heat C as function of the temper-
ature T for n = 0.75 and J = 0.0.5, 0.125, 1/6, 0.25 and 0.5;
(bottom) the entropy S as function of the temperature T for
n = 0.75 and J = 0.0.5, 0.125, 1/6, 0.25 and 0.5.

reported the 2-site results for U = 24 and J = 1/6 (t-J
model) and obtained the expected agreement. In the t-J
model case, we have used a value of J twice smaller than
the one used within the numerical analysis according to
the boundary conditions we applied to the 2-site system.
These results show, once more, that the correct and nec-
essary scales of energies are already present in the 2-site
system.

5.4.2 The temperature dependence
of the chemical potential µ and the double occupancy D

The temperature dependence of the chemical potential µ
is given in Figure 12 (top panel). µ has only one maximum
for U � 8 and two maxima and a minimum for higher val-
ues of U . In the t-J model, the chemical potential µ shows
a behavior at low temperatures in agreement with the one
found for the Hubbard model (i.e., limU�t JU = J). On
the contrary, for high temperatures the divergence is up-
ward instead of downward (see Fig. 12 (bottom panel)).

The temperature dependence of the chemical potential
can be explained as follows. In the Hubbard model and

Fig. 11. (top) The specific heat C as a function of the tem-
perature T for U = 12 at n = 1. The U = 24 and J = 1/6
(t-J mode) data are also reported. The FTL data (4 × 4) are
taken from reference [34]. (bottom) The specific heat C and
the entropy S as functions of the temperature T for J = 0.15
at n = 1. The FTL data (N = 20) are from reference [35].

at zero temperature, there exists a critical value of the
Coulomb interaction, function of the filling, above which
the potential energy becomes larger, in absolute value,
than the kinetic one. This critical value is a decreasing
function of the filling: lower is the doping higher the dou-
ble occupancy, bigger the potential energy and smaller, in
absolute value, the kinetic energy. Then, by increasing the
filling we increase the energy and the chemical potential
increases. At higher and higher temperatures, the system
behaves like a free system at zero temperature and has a
decreasing chemical potential. In particular, for a diverg-
ing temperature we have a negatively diverging chemical
potential (i.e., µ = dE/dn−TdS/dn) as the entropy is an
increasing function of the filling at very high temperatures
(i.e., in the almost free case) and n < 1. For intermedi-
ate temperatures, the chemical potential has maxima and
minima in coincidence with the peaks in the specific heat.
Any peak in the specific heat marks the temperature at
which the system gets the freedom to occupy a new state.
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µ

µ

Fig. 12. The chemical potential µ: (top) as function of the
temperature T for n = 0.75 and U = 0, 4, 8, 16, 24 and 32;
(middle) as function of the temperature T for n = 0.75 and
J = 0.05 , 0.125, 1/6, 0.25 and 0.5; (bottom) as function of the
temperature T for U = 12 and n = 0.5, 0.6, 0.7, 0.8 and 0.9.
The FTL data (4 × 4) are from reference [28].

The spin (i.e., T ∼ JU ) and the charge (i.e., T ∼ U) peaks
reflect in two maxima as they signal the availability of
triplet states and of doubly occupied states, respectively.
Both states has zero kinetic energy. On the contrary, the
kinetic (i.e., T ∼ t) peak signals the availability of further
singly occupied states which maximize the absolute value
of the kinetic energy. This reasoning strongly relies on the

region of filling the figure refers to (i.e., n ≈ 0.75). For
other doping regions the situation can be quite different
owing to the behavior in filling of the double occupancy,
the entropy and the positions and existence of the peaks
in the specific heat. These considerations can also explain
the quite different behavior we have in the t-J model. At
n = 0.75 the t-J model is approaching the full-filled sys-
tem (i.e., n = 1), on the contrary the Hubbard model is ap-
proaching the half-filled system. At zero temperature for
n > 0.5, increasing the filling we lowers, in absolute value,
the kinetic energy as the single electron states, which are
the only ones with a finite kinetic energy, are replaced by
the singlet and triplet states: the chemical potential is pos-
itive. Anyway, the exchange energy can effectively lower
its value on increasing J . At very high temperatures (i.e.,
in the almost free case), the entropy is now a decreasing
function of the filling and leads to the positive divergence.
At intermediate temperatures, the reasoning is identical
to the one given for the Hubbard model except for the
obvious absence of the charge peak in the t-J model.

In Figure 12 (bottom), it is reported the chemical po-
tential as function of the temperature T for U = 12 and
n = 0.5, 0.6, 0.7, 0.8 and 0.9. The FTL data (4 × 4) are
from reference [28]. The agreement is really excellent ex-
cept at low temperatures and for the higher values of the
filling (n = 0.8 and n = 0.9). At low temperatures, owing
to the finite level spacing the chemical potential has a step
behavior and, in particular, between n = 0.5 and n = 0.9
has practically no variation (cf. Fig. 3). At the higher val-
ues of the filling (n = 0.8 and n = 0.9), the number of
2-site states excited at high temperatures is larger than
those needed to mime the cluster.

The temperature dependence of the double occupancy
D at half filling shows a minimum at around T ≈ 1 be-
fore saturating at the non-interacting value n2/4 for very
high temperatures [36,37]. This minimum coincides with
the kinetic peak in the specific heat. As already discussed
for the chemical potential, this peak marks the freedom
for the system to occupy further singly occupied states
which have, obviously, zero double occupancy and, there-
fore, lower its total value.

5.4.3 The crossing points

In Figure 13 we report the temperature dependence of the
specific heat for U ≤ 5t at half filling (top panel) and n =
0.75 (bottom panel). For these low values of the Coulomb
repulsion we identify three crossing points/regions where
the specific heat is almost independent from the value of
the Coulomb repulsion U [38–40]. To compute the posi-
tions and heights of the crossing points we have expanded
the specific heat C as function of the Coulomb repulsion
U . We have got

C(T, U, n) = C0(T, n) + C2(T, n)U2 +O
(
U4

)
(5.5a)

C0(T, n = 1) = 2β2t2
[
1 − tanh2 (βt)

]
. (5.5b)
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C2(T, n = 1) =
e2βt

8T 4 (1 + e2βt)6

[
48t2e2βt

(
1 − 3e2βt + e4βt

)
+ 2tT

(
1 + 20e2βt − 20e6βt − e8βt

)
+ 2T 2

(
1 + e2βt

)4
]

. (5.6)

Fig. 13. The specific heat C as function of the temperature T
for n = 1 (left panel) [n = 0.75 (right panel)] and U = 0, 1, 2,
3, 4 and 5.

See equation (5.6) above.

The temperatures T ∗(n) at which the crossing
point can be observed are determined by the equation
C2(T, n) = 0. At half filling and at n = 0.75, this equation
gives the following results:

T ∗
1 (n = 1) ∼= 0.499 ⇒ C0

∼= 0.563 (5.7a)
T ∗

2 (n = 1) ∼= 0.997 ⇒ C0
∼= 0.841 (5.7b)

T ∗
3 (n = 1) ∼= 2.058 ⇒ C0

∼= 0.376 (5.7c)

T ∗
1 (n = 0.75) ∼= 0.951 ⇒ C0

∼= 0.523 (5.8a)
T ∗

2 (n = 0.75) ∼= 2.024 ⇒ C0
∼= 0.342. (5.8b)

Vollhardt found an approximate formula for C0 and T ∗, as
function of the dimensionality of the system, for the higher
temperature crossing point at half filling [39]. The values

that this formula gives for d = 1, the dimensionality of
the 2-site system within periodic boundary conditions, are
close, as regards C0, to the exact ones of equation (5.7c).

It is worth noting that higher is the temperature nar-
rower is the crossing region; ranging from quite wide re-
gions for the two lower temperatures to a very sharp point
for the higher temperature. Also the chemical potential
(Fig. 3 (top panel) at n ≈ 0.275, 0.75, 1.25, 1.725) and the
double occupancy show quite clear crossing points in (no
dependence on) temperature.

5.5 Charge, spin and pair correlations

The charge (i.e., χαc ), spin (i.e., χαs ) and pair (i.e., d) corre-
lation functions contain information regarding the spatial
distributions of the corresponding quantities. Obviously,
we can only consider the quantum fluctuations in the para-
magnetic state, which is the only admissible equilibrium
state on a finite cluster.

The charge correlation function χαc is shown in Fig-
ure 14 (top) as function of the interaction U for differ-
ent values of the temperature T and n = 1. In the non-
interacting case (U = 0) and at zero temperature we have

χαc − n2 =
{

− 1
2n

2 if n ≤ 1
− 1

2 (2 − n)2 if n ≥ 1
(5.9)

as only the singlet states with one electron (n ≤ 1) [one
hole (n ≥ 1)] per site contribute. In fact, these are the
states which lower the most the internal energy as they
maximize the absolute value of the kinetic one. In the
strongly interacting limit (U → ∞) and at zero tempera-
ture we have

χαc − n2 =




−n2 if n ≤ 0.5
− (1 − n)2 if 0.5 ≤ n ≤ 1.5
− (2 − n)2 if n ≥ 1.5

(5.10)

as only the states with a single electron (n ≤ 0.5) (a sin-
gle hole (n ≥ 1.5)) or only with one electron per site
(0.5 ≤ n ≤ 1) (one hole per site (1 ≤ n ≤ 1.5)) con-
tribute. In fact, no double occupancy is allowed and there
is no gain in the kinetic energy if the singlet states are used
as JU → 0. At intermediate values of the coupling U the
double occupied states play a relevant role and we found
results between the limiting cases reported above: on in-
creasing the coupling U the double occupancy diminishes
and consequently the states with one electron per site in-
crease their contribution and the value of χαc (see Fig. 14
(top)). On increasing the temperature T , more and more
states become available and the correlation tends to its
reducible part, n2.

The spin correlation function χαs is reported in Fig-
ure 14 (bottom) for the same parameters chosen for χαc .
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χα

χα

Fig. 14. The charge χα
c (top) and spin χα

s (bottom) correlation
functions as functions of U at n = 1 and for T = 0, 0.1, 0.5
and 1.

In the non-interacting case (U = 0), we have χαs = χαc :
in absence of interaction the charge and spin behave co-
herently. On increasing the interaction potential U the
singlet states are favored and the spin correlations get en-
hanced (JU gets closer and closer to 4t2/U which is the
scale of energy of the spin excitations, see Fig. 15). Then,
further increasing U the value of JU tends to zero and the
spin correlations get suppressed except at zero tempera-
ture (see Fig. 14 (bottom)). A rapid suppression of the
spin fluctuations can be caused also by the increment of
the temperature.

The pair correlation function d is reported in Figure 16
as function of the temperature T at n = 1 and for U = 0,
2, 4, 8, 12 and 16. Obviously, d decreases on increasing
the Coulomb interaction U and is maximum at half-filling
where the singlet state is the favorite one. On increasing
the temperature T (see Fig. 16), more and more states
become available and the pair correlation function d tends
to zero.

Fig. 15. Comparison between JU and its limiting value 4t2/U
as functions of U .

Fig. 16. The pair correlation function d as function of T at
n = 1 and for U = 0, 2, 4, 8, 12 and 16.

5.6 Charge and spin susceptibilities

The charge and spin susceptibilities χµ(k, ω) are given by

χµ(k, ω) = −F 〈R[nµ(i)nµ(j)]〉 (5.11)

where no summation is implied by repeated indices. By
means of the expression of the causal Green’s function
given in Section 4.2 is immediate to compute the following
static susceptibilities through the spectral theorem

tχc(k, 0) = −Cαcc −
U

2t
d (5.12)

tχs(k, 0) = −Cαcc −
1
12
U

t
χαs (5.13)

where d and χαs are the first-neighbor pair and spin cor-
relation functions, respectively.

In Figure 17, the charge χc(k, 0) and spin χs(k, 0) sus-
ceptibilities are reported as function of the temperature T
for different values of the Coulomb repulsion U and n = 1.
As it results clear by equations (5.12), the two suscepti-
bilities result identical in the non-interacting case U = 0:
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χ

χ

Fig. 17. The charge χc(0, 0) (top) and spin χs(0, 0) (bottom)
susceptibilities as functions of T at n = 1 for U = 0, 2, 4, 8,
12 and 16.

once more charge and spin behave coherently in absence of
interaction. On increasing the Coulomb repulsion, the two
susceptibilities behave in opposite manners: the charge
susceptibility is strongly suppressed, in particular at half-
filling where a charge gap develops in the strongly inter-
acting limit (U → ∞); the spin susceptibility is greatly
enhanced, in particular at half-filling where the singlet
state is the favorite one. The behavior of the two suscep-
tibilities as functions of the temperature deserve special
attention as it is directly connected with the formation of
a gap in the corresponding channel. The spin susceptibility
shows the typical paramagnetic behavior: plateau at low
temperatures and Curie tail at high temperatures. The
charge susceptibility instead shows the presence of a gap
in the strongly interacting limit (U → ∞). The small up-
turn at low temperatures and medium-high values of the
Coulomb repulsion U is due to the finite level-spacing of
the system. In particular, it arises from the intra-subband
gaps characteristic of the scale of energy JU .

In the t-J model, we simply have

tχc (k, 0) = −Cα11 (5.14)

tχs (k, 0) = −Cα11 −
1
3
t

J
χαs . (5.15)

5.7 Thermal compressibility

The thermal compressibility is defined as

κ =
1
n2

∂n

∂µ
. (5.16)

By using some general quantum statistical relations, which
can be established between the particle density n and
the chemical potential µ [41], we can express the thermal
compressibility in terms of the density-density correlation
function

κ =
1
Tn2

[(
n+ 2D − n2

)
+
(
χαc − n2

)]
. (5.17)

In Figure 18, the thermal compressibility κ is reported
as function of the temperature T for different values of the
Coulomb repulsion U and n = 1. The system is completely
incompressible κ = 0 when no more particles are allowed
to enter the system: the chemical potential, which is a
measure of the energy necessary to insert a new particle
in the system, diverges. Obviously, the system is extremely
eager to accept particles at very low fillings, in order to
increase in absolute value the kinetic energy and lower
the total one, and absolutely incompressible at n = 2,
when all the quantum states are filled. At zero tempera-
ture, the Coulomb repulsion makes incompressible also the
states with commensurate fractional fillings n = 0.5 and
n = 1.5. At half-filling, on increasing the Coulomb repul-
sion, the compressibility is rapidly suppressed according to
the very high price in energy that should be paid to add
one particle to the singlet state which is the one favored
by the Coulomb repulsion. The most relevant feature for
this property is the presence of a well-defined peak when
it is plotted versus temperature. A finite, but low in com-
parison with the actual value of the Coulomb repulsion,
temperature permits to overcome the suppression related
to the formation of a charge gap. A further increment of
the temperature makes available more and more states
and the system is driven back to be incompressible.

It is possible to write the compressibility for the Hub-
bard and t-J models in an identical way

κ =
2
Tn2

(
Γ11c − n2

)
(5.18)

where Γ11c is the zero frequency function in the charge
channel and its ergodic value is exactly n2. According to
this, the compressibility is a direct measure of the ergod-
icity of the charge dynamics.

5.8 Optical conductivity

In the framework of the linear response and by using the
Ward-Takahashi identities [42], which relate the current-
current propagator to the charge-charge one by exploit-
ing the charge conservation, the optical conductivity is
given by

σ1(ω) = Dwδ(ω) (5.19)
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κ

Fig. 18. The compressibility κ as a function of T at n = 1 for
U = 0, 2, 4, 8, 12 and 16.

π

Fig. 19. The Drude weight Dw as a function of n for T = 1
and U = 0, 2, 4, 8, 12, 16 and 24.

with the Drude weight Dw given by

Dw = −4πe2a2tCαcc. (5.20)

For the 2-site system, the incoherent part of optical con-
ductivity is zero as no contribution comes from the imag-
inary part of retarded current-current propagator.

In Figure 19, the Drude weight Dw, normalized by
2πe2a2, is reported as function of the filling n for dif-
ferent values of the Coulomb repulsion U and T = 1.
At half-filling, the Coulomb repulsion tends to suppress
the Drude weight and drives the system to be insulating.
However, the Drude weight vanishes only in the limit U
infinite. Higher the temperature more states with no con-
tribution to the kinetic energy result available and lower
is the Drude weight.

6 Ergodicity

One of the main issues on which this manuscript wishes
to draw attention is the non-ergodicity of the charge and
spin dynamics in the two-site Hubbard model. The non-
ergodic dynamics in this system is due to the finite number

Γ

Γ

Fig. 20. The charge zero frequency constant Γ11c diminished
of n2: (top) as function of n for T = 0.1 and U = 0, 2, 4, 8, 12
and 16; (bottom) as function of U at n = 1 and for T = 0, 0.1,
0.5 and 1.

of degenerate states available to the system when dealing
with finite temperatures and/or incommensurate fillings
and/or no interaction (cf. Tab. 1 and Eq. (A.12)). The
finite level spacing confines the system to degenerate or
non-degenerate states, according to the filling and interac-
tion strength, making the dynamic ergodic or non-ergodic
according to the degree of degeneracy of the ground state.
The temperature then opens up the possibility for quite
complicate mixtures, only possible according to our choice
to work in the grand-canonical ensemble in order to get
results comparable with larger systems for which the level
spacing is thinner. The coupling to an heat and a particle
reservoirs have given us the possibility to simulate a con-
tinuous tuning of the filling and temperature on a finite
system (with a finite degree of freedom) as it is possible
only in a bulk system with infinite degrees of freedom.

The zero-frequency constants for charge Γ11c and spin
Γ11s channels have been plotted as functions of the fill-
ing n for different values of the Coulomb repulsion U and
T = 0.1 and as functions of the interaction U for different
values of temperature T and n = 1 in Figures 20 and 21.
Their ergodic values are n2 and 0, respectively. Γ11c as-
sumes its ergodic value only at zero temperature and com-
mensurate fillings; in particular, only at integer commen-
surate fillings for any interaction strength and also at
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Γ

Γ

Fig. 21. The spin zero frequency constant Γ11s: (top) as func-
tion of n for T = 0.1 and U = 0, 2, 4, 8, 12 and 16; (bottom)
as function of U at n = 1 and for T = 0, 0.1, 0.5 and 1.

fractional ones for a finite interaction strength. On the
other hand, Γ11s assumes its ergodic value only at zero
temperature and integer commensurate fillings for any in-
teraction strength. At half-filling, while the charge dynam-
ics is constrained to be ergodic in the strongly interacting
limit (U → ∞) by the formation of a charge gap, the spin
dynamics gets more and more non-ergodic as larger the in-
teraction strength is. The states that are left available in
this condition have a quite different behavior once probed
with respect to the charge or spin response.

7 Conclusions

We have studied the 2-site Hubbard and t-J models by
means of the Green’s function and equations of motion
formalism. The main results can be so summarized:

• We have got a complete basis of eigenoperators for the
fermionic and bosonic sectors which could be used to
get a controlled approximation in the study of the lat-
tice case by means of any approximation that strongly
relies on the choice of the basic field.

• We have identified the eigenoperator responsible for
the appearance of the exchange scale of energy J .

• We have illustrated, once more [11], as the local alge-
bra constrains can properly fix the representation and
easily give the values of the bosonic correlations that
appear as internal parameters in the fermionic sector
and of the zero frequency functions that appear in the
bosonic sector. This also permits, while studying the
fermionic sector, to avoid the opening of the bosonic
one (i.e., the charge, the spin and pair channels) and
all the heavy calculations required to solve it.

• We have explored the possibility of the 2-site systems
to mime the behavior of larger clusters, as regards
some of their physical properties, by using an higher
temperature and by exploiting the qualitative proper-
ties of the level spacing. We have to report that the ex-
act results of the 2-site system managed to reproduce
the Mott-Hubbard MIT of the bulk, the behavior of
some local quantities (i.e., the double occupancy, the
local magnetic moment and the kinetic energy) and
of some thermodynamic quantities (i.e., the energy,
the specific heat and the entropy) of larger clusters.
This shows that the necessary energy scales are al-
ready present in the 2-site system. According to this,
as already said in the first point above, we strongly
believe that the operatorial basis that exactly solves
this system can also give excellent results if used for
the bulk.

• The study of the specific heat has given many valu-
able information regarding: the scales of energy present
in the system, their origin, interaction and pos-
sibility of resolution, the range of parameters for
which the t-J model faithfully reproduces the low en-
ergy/temperature behavior of the Hubbard model, the
explanation for the temperature dependence of the lo-
cal properties, the existence of crossing points.

• We have shown how relevant is the determination of
the zero-frequency constants in order to correctly com-
pute the bosonic Green’s functions. In particular, we
have shown that, for the 2-site system, they assume
values very far from the ergodic ones.

We wish to thank A. Moreo [33] and P. Prelovsek [28,34,35]
for providing us with the numerical data.

Appendix A: The eigenproblem

The eigenproblem of a given grand canonical Hamiltonian
H is solved once the latter is diagonalized on the Fock
space of the system under study, that is

H |n〉 = En |n〉 (A.1a)
N |n〉 = Nn |n〉 (A.1b)

where N =
∑

i n(i) is the total number operator and |n〉
is a complete orthonormal basis.

Once the eigenproblem is solved, we can compute the
thermal average of an operator Φ by means of the following
expression

〈Φ〉 =
1
Z

∑
n

〈n|Φ |n〉 e−βEn (A.2)
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where Z =
∑

n e−βEn is the grand canonical partition
function and β is the inverse temperature.

If a finite minimal energy Emin exists then

lim
T �→0

〈Φ〉 =
1
M

∑
n|En=Emin

〈n|Φ |n〉 (A.3)

whereM is the number of eigenstates |n〉 with En = Emin.
On the basis of the knowledge of the set of eigen-

states and eigenvalues of H (A.1a) it is possible to de-
rive the expressions for Green’s functions and correlation
functions. Let ψ(i) be a field operator in the Heisenberg
scheme ψ(i) = ψ(i, t) = eiHtψ(i)e−iHt; we do not specify
the nature, fermionic or bosonic, of ψ(i) (ψ(i) can be, for
instance, either c(i) or n(i)). By considering the two-time
thermodynamic Green’s functions [43–45], let us define the
causal function

G
C(η)

ψψ† (i, j) = θ (ti − tj)
〈
ψ(i)ψ†(j)

〉
− ηθ (tj − ti)

〈
ψ†(j)ψ(i)

〉
(A.4)

the retarded and advanced functions

G
R,A(η)

ψψ† (i, j) = ±θ [± (ti − tj)]
〈[
ψ(i), ψ†(j)

]
η

〉
(A.5)

and the correlation function

Cψψ†(i, j) =
〈
ψ(i)ψ†(j)

〉
. (A.6)

Here η = ±1; usually, it is convenient to take η = 1
(η = −1) for a fermionic (bosonic) field ψ (i.e., for a com-
posite field constituted of an odd (even) number of original
fields) in order to exploit the canonical (anti)commutation
relations of the constituting original fields; but, in princi-
ple, both choices are possible. Accordingly, we define

[A,B]η =

{
{A,B} = AB +BA for η = 1
[A,B] = AB −BA for η = −1.

(A.7)

By using the definition of thermal average (A.2) it is pos-
sible to derive the following expressions for the Green’s
functions (A.4, A.5) and correlation functions (A.6) in
terms of eigenstates and eigenvalues

G
C(η)

ψψ† (i, j, ω) = Γψψ†(i, j)
[
(1 + η)P 1

ω
− iπ(1 − η)δ(ω)

]

+
1
Z

∑
n,m

En 	=Em

(
An,m
ψψ†(i, j)e−βEn

ω + En − Em + iδ
+
ηAn,m

ψψ†(i, j)e−βEm

ω + En − Em − iδ

)

(A.8)

G
R,A(η)

ψψ† (i, j, ω) = Γψψ†(i, j)
1 + η

ω ± iδ

+
1
Z

∑
n,m

En 	=Em

An,m
ψψ†(i, j)

(
e−βEn + ηe−βEm

)
ω + En − Em ± iδ

(A.9)

Cψψ†(i, j, ω) = 2πΓψψ†(i, j)δ(ω)

+
2π
Z

∑
n,m

En 	=Em

e−βEnAn,m
ψψ†(i, j)δ(ω + En − Em) (A.10)

where

An,m
ψψ†(i, j) = 〈n|ψ(i)|m〉〈m|ψ†(j)|n〉 (A.11)

and the zero frequency constant Γψψ†(i, j) has the follow-
ing representation

Γψψ†(i, j) =
1
Z

∑
n,m

En=Em

e−βEnAn,m
ψψ†(i, j). (A.12)

It is worth noticing that, in this presentation (i.e., in
terms of eigenstates and eigenvalues), the Green’s func-
tions and correlation functions are fully determined up to
the value of the chemical potential, which is present in
the expressions of the eigenvalues. As usual, the compu-
tation of the chemical potential requires the inversion of
the expression, in terms of eigenstates and eigenvalues, for
the number of particle per site (A.42). In the main text
instead, we presented expressions for the same quantities
(Green’s and correlation functions) in terms of eigenener-
gies of eigenoperators and of correlation functions of these
latter. In this case, more parameters appeared (∆ and p in
the fermionic sector and χαs , d, γ and the zero frequency
constant Γ11µ in the bosonic sector) that have been com-
puted self-consistently as we usually do for the chemical
potential. The two presentations, although equivalent (i.e.,
they obviously lead to the same results), require two differ-
ent self-consistent procedures to come to the computation
of the physical quantities. The reason of this occurrence
resides in the level of knowledge of the representation we
have in the two cases. In the first case, we have the full
knowledge of the states of the system and we should only
fix their occupancy with respect to the average number of
particle per site we wish to fix; in the second case, as we
have no direct knowledge of the states before fixing the
counting we have to reduce the Hilbert space to the cor-
rect one (i.e., the one of the system under analysis), that
is, we have to impose constraints in order to select only
those states that enjoy the correct symmetry properties
(e.g., we have to discard states with site double occupied
by electrons with parallel spins). At any rate, we want to
emphasize once more that all the results obtained in this
paper by means of the Green’s function formalism exactly
coincide, as it should be, with those computable by means
of the thermal averages.

The eigenstates of the systems under study are given
by linear combinations of the vectors spanning their Fock
spaces. These vectors can be displayed as |a, b〉 where a
and b denote the occupancy of each site, respectively. In
particular, we have 0 for an empty site, ↑ (↓) for a single
occupied site by a spin-up (spin-down) electron and ↑↓ for
a double occupied site. This latter is not allowed in the
t-J model (see Tab. 1).
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Table 1. The eigenstates and eigenenergies of the 2-site Hubbard and t-J (first nine with α1 = 1/
√

2, α2 = 0 and JU = J) mod-
els. In the last column is reported the corresponding eigenvalue of Sz that, together with En the eigenvalue of the Hamiltonian,
completely characterized the states (i.e., the presence of an external magnetic field will completely lift the degeneracy).

n |n〉 En Nn Szn

1 |0, 0〉 0 0 0

2 1√
2

[|↑, 0〉 − |0, ↑〉] −µ + 2t 1 1
2

3 1√
2

[|↓, 0〉 − |0, ↓〉] −µ + 2t 1 − 1
2

4 1√
2

[|↑, 0〉 + |0, ↑〉] −µ − 2t 1 1
2

5 1√
2

[|↓, 0〉 + |0, ↓〉] −µ − 2t 1 − 1
2

6 |↑, ↑〉 −2µ 2 1

7 |↓, ↓〉 −2µ 2 −1

8 1√
2

[|↑, ↓〉 + |↓, ↑〉] −2µ 2 0

9 α1 [|↑, ↓〉 − |↓, ↑〉] − α2 [|↑↓, 0〉 + |0, ↑↓〉] −2µ − 4JU 2 0

10 1√
2

[|↑↓, 0〉 − |0, ↑↓〉] −2µ + U 2 0

11 α2 [|↑, ↓〉 − |↓, ↑〉] + α1 [|↑↓, 0〉 + |0, ↑↓〉] −2µ + U + 4JU 2 0

12 1√
2

[|↑↓, ↑〉 + |↑, ↑↓〉] −3µ + 2t + U 3 1
2

13 1√
2

[|↑↓, ↓〉 + |↓, ↑↓〉] −3µ + 2t + U 3 − 1
2

14 1√
2

[|↑↓, ↑〉 − |↑, ↑↓〉] −3µ − 2t + U 3 1
2

15 1√
2

[|↑↓, ↓〉 − |↓, ↑↓〉] −3µ − 2t + U 3 − 1
2

16 |↑↓, ↑↓〉 −4µ + 2U 4 0

A.1 The Hubbard model

The eigenstates and eigenenergies of the 2-site Hubbard
model are reported in Table 1. The coefficients α1 and α2

are determined by the orthonormality of the eigenstates
and have the following expressions:

α1 =
(U + 4JU )

√
2

2
√

(U + 4JU )2 + 16t2
(A.13)

α2 = − 2t
√

2√
(U + 4JU )2 + 16t2

. (A.14)

We also have α2
1 + α2

2 = 1/2.
Expressions (A.8, A.9) and (A.10) show that the

Green’s functions and the correlation functions are com-
pletely determined (up to the value of the chemical po-
tential) once the matrices An,m

ψψ†(i, j) are known. We here
give the results for some relevant operators (i, j = 1, 2;
∆a,b = δa,nδb,m):

Operator ξ(i)

An,m
ξ↑ξ

†
↑
(1,1) = Bn,m

ξ↑ξ
†
↑

+ Cn,m
ξ↑ξ

†
↑

(A.15)

An,m
ξ↑ξ

†
↑
(1,2) = −Bn,m

ξ↑ξ
†
↑

+ Cn,m
ξ↑ξ

†
↑

(A.16)

An,m
ξ↓ξ

†
↓
(1,1) = Bn,m

ξ↓ξ
†
↓

+ Cn,m
ξ↓ξ

†
↓

(A.17)

An,m
ξ↓ξ

†
↓
(1,2) = −Bn,m

ξ↓ξ
†
↓

+ Cn,m
ξ↓ξ

†
↓

(A.18)

where

Bn,m
ξ↑ξ

†
↑

=
1
2

(
∆1,2 +∆4,6 +

1
2
∆5,8 + α2

1∆3,9

)

+
1
2

(
α2

2∆3,11 + α2
2∆9,14 +

1
2
∆10,12 + α2

1∆11,14

)
(A.19)

Cn,m
ξ↑ξ

†
↑

=
1
2

(
∆1,4 +∆2,6 +

1
2
∆3,8 + α2

1∆5,9

)

+
1
2

(
α2

2∆5,11 + α2
2∆9,12 +

1
2
∆10,14 + α2

1∆11,12

)
(A.20)

Bn,m
ξ↓ξ

†
↓

=
1
2

(
∆1,3 +∆5,7 +

1
2
∆4,8 + α2

1∆2,9

)

+
1
2

(
α2

2∆2,11 + α2
2∆9,15 +

1
2
∆10,13 + α2

1∆11,15

)
(A.21)

Cn,m
ξ↓ξ

†
↓

=
1
2

(
∆1,5 +∆3,7 +

1
2
∆2,8 + α2

1∆4,9

)

+
1
2

(
α2

2∆4,11 + α2
2∆9,13 +

1
2
∆10,15 + α2

1∆11,13

)
.

(A.22)
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Operator η(i)

An,m
η↑η

†
↑
(1,1) = Bn,m

η↑η
†
↑

+ Cn,m
η↑η

†
↑

(A.23)

An,m
η↑η

†
↑
(1,2) = −Bn,m

η↑η
†
↑

+ Cn,m
η↑η

†
↑

(A.24)

An,m
η↓η

†
↓
(1,1) = Bn,m

η↓η
†
↓

+ Cn,m
η↓η

†
↓

(A.25)

An,m
η↓η

†
↓
(1,2) = −Bn,m

η↓η
†
↓

+ Cn,m
η↓η

†
↓

(A.26)

where

Bn,m
η↑η

†
↑

=
1
2

(
∆7,15 +∆15,16 +

1
2
∆5,10 + α2

1∆3,11

)

+
1
2

(
α2

2∆3,9 + α2
2∆11,12 +

1
2
∆8,14 + α2

1∆9,12

)
(A.27)

Cn,m
η↑η

†
↑

=
1
2

(
∆7,13 +∆13,16 +

1
2
∆3,10 + α2

1∆5,11

)

+
1
2

(
α2

2∆5,9 + α2
2∆11,14 +

1
2
∆8,12 + α2

1∆9,14

)
(A.28)

Bn,m
η↓η

†
↓

=
1
2

(
∆6,14 +∆14,16 +

1
2
∆4,10 + α2

1∆2,11

)

+
1
2

(
α2

2∆2,9 + α2
2∆11,13 +

1
2
∆8,15 + α2

1∆9,13

)
(A.29)

Cn,m
η↓η

†
↓

=
1
2

(
∆6,12 +∆12,16 +

1
2
∆2,10 + α2

1∆4,11

)

+
1
2

(
α2

2∆4,9 + α2
2∆11,15 +

1
2
∆8,13 + α2

1∆9,15

)
.

(A.30)

Operator n(i) = c†(i)c(i)

An,mnn (1,1) = Bn,mnn + Cn,mnn +Dn,m
nn (A.31)

An,mnn (1,2) = Bn,mnn − Cn,mnn −Dn,m
nn (A.32)

where

Bn,mnn =
1
4

(∆2,2 +∆3,3 +∆4,4 +∆5,5 + 4∆6,6)

+ (∆7,7 +∆8,8 +∆9,9 +∆10,10 +∆11,11)

+
1
4

(9∆12,12 + 9∆13,13 + 9∆14,14 + 9∆15,15 + 16∆16,16)

(A.33)

Cn,mnn =
1
4

(∆2,4 +∆3,5 +∆4,2 +∆5,3)

+
1
4

(∆12,14 +∆13,15 +∆14,12 +∆15,13) (A.34)

Dn,m
nn = 2

(
α2

2∆9,10 + α2
2∆10,9 + α2

1∆10,11 + α2
1∆11,10

)
.

(A.35)

Operator n3(i)

An,mn3n3
(1,1) = Bn,mn3n3

+ Cn,mn3n3
+Dn,m

n3n3
(A.36)

An,mn3n3
(1,2) = Bn,mn3n3

− Cn,mn3n3
−Dn,m

n3n3
(A.37)

where

Bn,mn3n3
=

1
4

(∆2,2 +∆3,3 +∆4,4 +∆5,5 + 4∆6,6)

+
1
4

(4∆7,7 +∆12,12 +∆13,13 +∆14,14 +∆15,15)

(A.38)

Cn,mn3n3
= Cn,mnn (A.39)

Dn,m
n3n3

= 2
(
α2

2∆8,11 + α2
2∆11,8 + α2

1∆8,9 + α2
1∆9,8

)
.

(A.40)

A.2 The t-J model

The eigenstates and eigenenergies of the 2-site t-J model
coincides with the first nine of the Hubbard model with
α1 = 1/

√
2, α2 = 0 and JU = J . Actually, in the strong

coupling regime (i.e., U � t) we have α1 → 1/
√

2, α2 → 0
and JU → 4t2/U . In particular, this latter value (4t2/U) is
the one we get in the strong coupling regime when deriving
the t-J model from the Hubbard one. All other states of
the Hubbard model can not be realized in the t-J model
owing to the exclusion of the double occupancies.

Following the same prescription (only first nine states,
α1 = 1/

√
2, α2 = 0 and JU = J), it is possible to get

An,m
ξξ† (i, j), An,mνν (i, j) and An,mν3ν3(i, j) form the correspond-

ing expressions given for the Hubbard model (An,m
ξξ† (i, j),

An,mnn (i, j) and An,mn3n3
(i, j), respectively).

A.3 The properties

Given the expressions of An,m
ψψ†(i, j), we can now compute

the relevant physical quantities.

A.3.1 The Hubbard model

The partition function is given by

Z = 1 + 2e−βE2 + 2e−βE4 + 3e−βE6 + e−βE9 + e−βE10

+ e−βE11 + 2e−βE12 + 2e−βE14 + e−βE16 . (A.41)

The chemical potential µ can be computed inverting
the following expression for the particle number per site

n =
1
Z

(
e−βE2 + e−βE4 + 3e−βE6 + e−βE9 + e−βE10

+e−βE11 + 3e−βE12 + 3e−βE14 + 2e−βE16
)
. (A.42)
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µ = T ln
(2n − 1) cosh(2βt) +

√
(2n − 1)2 cosh2(2βt) + n(1 − n)(3 + e4βJ )

(1 − n)(3 + e4βJ )
. (A.55)

This expression determines the chemical potential as a
function of n, T and U .

The self-consistent parameter ∆ and p are given by

∆ =
1

2Z
(
e−βE2 − e−βE4 − e−βE13 + e−βE15

)
(A.43)

p =
1

2Z
(
3e−βE6 − e−βE9 + e−βE10 − e−βE11 + 2e−βE12

+2e−βE14 + 2e−βE16
)
. (A.44)

The correlation functions Cα12 and Cαcc are given by

Cα12 =
α1α2

Z

(
e−βE9 − e−βE11

)
(A.45)

Cαcc =
1

2Z
[
e−βE2 − e−βE4 + 4α1α2

(
e−βE9 − e−βE11

)
+e−βE12 − e−βE14

]
. (A.46)

The double occupancy per site is given by

D =
1

2Z
(
2α2

2e
−βE9 + e−βE10 + 2α2

1e
−βE11 + 2e−βE12

+2e−βE14 + 2e−βE16
)
. (A.47)

Spin (χαs ), charge (χαc ) and pair (d) correlation func-
tions are given by

χαs =
3
Z

(
e−βE6 − 2α2

1e
−βE9 − 2α2

2e
−βE11

)
(A.48)

χαc =
1
Z

(
3e−βE6 + 2α2

1e
−βE9 + 2α2

2e
−βE11

+4e−βE12 + 4e−βE14 + 4e−βE16
)

(A.49)

d =
1

2Z
(
2α2

2e
−βE9 − e−βE10 + 2α2

1e
−βE11

)
. (A.50)

The zero-frequency constant Γ110 = Γnn(1,2) and
Γ113 = Γn3n3(1,2) are given by

Γ110 =
1

2Z
(
e−βE2 + e−βE4+6e−βE6+2e−βE9+2e−βE10

+2e−βE11 + 9e−βE12 + 9e−βE14 + 8e−βE16
)

(A.51)

Γ113 =
1

2Z
(
e−βE2 + e−βE4 + 4e−βE6+e−βE12 + e−βE14

)
.

(A.52)

A.4 The t-J model

The partition function is given by

Z = 1 + 2e−βE2 + 2e−βE4 + 3e−βE6 + e−βE9 . (A.53)

The chemical potential µ can be computed through the
following expression for the particle number per site

n =
1
Z

(e−βE2 + e−βE4 + 3e−βE6 + e−βE9) (A.54)

which can be inverted and give

See equation (A.55) above.

The self-consistent parameter Cα11 and χα are given by

Cα11 =
1

2Z
(
e−βE2 − e−βE4

)
(A.56)

χαµ =
2
Z

(
3e−βE6 − e−βE9

)
. (A.57)

Spin (χαs ) and charge (χαc ) correlation functions are
given by

χαs =
1
Z

(
e−βE6 − e−βE9

)
(A.58)

χαc =
1
Z

(
3e−βE6 + e−βE9

)
. (A.59)

The zero-frequency constant Γ110 = Γnn(1,2) and
Γ113 = Γn3n3(1,2) are given by

Γ110 =
1

2Z
(
e−βE2 + e−βE4 + 6e−βE6 + 2e−βE9

)
(A.60)

Γ113 =
1

2Z
(
e−βE2 + e−βE4 + 4e−βE6

)
. (A.61)
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